Two dimensional numerical simulation of shallow archaeological targets using high-frequency electromagnetic method

QiLin LI, FangLi LIN, YongChao ZHANG, GuangJie WANG, Ruo WANG, JinSheng YU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 849-860.

PDF(7297 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7297 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 849-860. DOI: 10.6038/pg2025HH0499

Two dimensional numerical simulation of shallow archaeological targets using high-frequency electromagnetic method

Author information +
History +

Abstract

Electromagnetic detection has become an important means of archaeological geophysics due to its good resolution of good conductors, small terrain limitations, and high work efficiency. The detection depth and resolution are important factors that constrain the development of electromagnetic archaeological exploration. Domestic and foreign scholars have conducted more research on combining electromagnetic methods with other methods (such as magnetic method, seismic exploration, gravity exploration, etc.) to compensate for the limitations of electromagnetic methods in the field of archaeological exploration, while there are few references to analyze archaeological target models from the perspective of method innovation. This article mainly uses finite element method and combines archaeological target models to conduct two-dimensional forward simulation of high-frequency electromagnetic methods proposed in the field of archaeological exploration in recent years. Firstly, a definite solution equation is derived based on boundary conditions. Secondly, shallow, weak, and small archaeological target models are established and triangulated. For this model, the electromagnetic field components and apparent resistivity response characteristics of anomalous bodies were studied under different resistivity, burial depth, and receiving frequency. The results show that: (1) the resolution of high-frequency electromagnetic method for low resistivity bodies (24%) is much higher than that for high resistivity bodies (10%). However, due to the shallow burial depth and high observation frequency of archaeological relics, both low and high resistivity archaeological relics have a response, which is also the advantage of high-frequency electromagnetic method for archaeological research; (2) For shallow high resistivity target models, within the design frequency band, the higher the frequency, the more obvious the apparent resistivity response curve, and the Hz curve pattern is opposite to the apparent resistivity.

Key words

Archeology / Finite element method / Forward modeling / High-frequency electromagnetic method

Cite this article

Download Citations
QiLin LI , FangLi LIN , YongChao ZHANG , et al . Two dimensional numerical simulation of shallow archaeological targets using high-frequency electromagnetic method[J]. Progress in Geophysics. 2025, 40(2): 849-860 https://doi.org/10.6038/pg2025HH0499

References

Bie K, Shi Z J, Tian G. 2016. Capacitive coupled resistivity method and its application in archaeological exploration of urban sites. //Annual Meeting of Chinese Geoscience Union in 2016 (in Chinese). Beijing: Chinese Geophysical Society, 1.
Cao W J , Wang R , Wang G J , et al. 3D numerical simulation study on high frequency electromagnetic method in archaeological exploration. Progress in Geophysics, 2023, 38 (3): 1305- 1316.
Dai T Y , Xie S P . Application of resistivity technique in the relic archaeology. Progress in Geophysics, 2015, 30 (6): 2885- 2891.
Grassi S , Morreale G , Lanteri R , et al. Integration of geophysical survey data for the identification of new archaeological remains in the subsoil of the Akrai Greek site (Sicily, Italy). Heritage, 2023, 6 (2): 979- 992.
Hu X , Lu P , Li Y L , et al. Prehistoric damaging earthquake promoted the decline of "Heluo Ancient State" in Early China. Science China Earth Sciences, 2023, 66 (5): 1120- 1132.
Jiang H Y , Zhang L M . Development of archaeogeophysics in China. Chinese Journal of Geophysics, 1997, 40 (S1): 379- 385.
Jiang H Y , Zhang L M . Archaeological Geophysics (in Chinese). Beijing: Science Press, 2000,
Li N T , Huang B C . Insight into reliability of archeomagnetic Paleointensity isolated from pottery materials. Chinese Journal of Geophysics, 2022, 65 (7): 2613- 2621.
Li Q L , Kang H M , Wang G J , et al. Study on the TEM response forward calculation of uniform half-space pulse current. Progress in Geophysics, 2023, 38 (3): 1152- 1160.
Li S L , Sun H Y , Lin T L . A comparison of topographic correction and interpretation methods for controllable source audio frequency magnetotelluric archeological data. Geophysical and Geochemical Exploration, 2005, 29 (6): 541- 544. 541-544, 556
Li Y H , Wang G J , Xu X W , et al. Geophysical application of cosmic-ray muon detection technology. Progress in Geophysics, 2021, 36 (2): 753- 758.
Lin J X , Tian G , Wang B B , et al. Integrated geophysical survey for palaeo-drainage system at Liangzhu sites. Journal of Zhejiang University (Engineering Science), 2011, 45 (5): 954- 960.
Lin J X , Tian G , Shi Z J . Geophysical prospecting study of the satellite tomb in Xixia mausoleum site. Geotechnical Investigation & Surveying, 2014, 42 (7): 87- 93.
Nabighian M N , Corbett J D . Electromagnetic Methods in Applied Geophysics: Volume 1, Theory. Tulsa: Society of Exploration Geophysicists, 1987,
Piao H R . Principles of Electromagnetic Sounding Method (in Chinese). Beijing: Geological Publishing House, 1990,
Shen H Y , Yuan B Q , Xiao Z X , et al. Geophysical exploration for archaeology in the ancient city of Jinyang, China. Progress in Geophysics, 2008, 23 (4): 1291- 1298.
Shi Z J, Tian G, Wang B B, et al. 2016. New progress in archaeological geophysical exploration technology research. //Annual Meeting of Chinese Geoscience Union in 2016 (in Chinese). Beijing: Chinese Geophysical Society, 3.
Simon F X , Tabbagh A , Donati J C , et al. Permittivity mapping in the VLF-LF range using a multi-frequency EMI device: first tests in archaeological prospection. Near Surface Geophysics, 2019, 17 (1): 27- 41.
Tang P P , Chen F L , Jiang A H , et al. Multi-frequency electromagnetic induction survey for archaeological prospection: approach and results in Han Hangu pass and Xishan Yang in China. Surveys in Geophysics, 2018, 39 (6): 1285- 1302.
Urrutia-Fucugauchi J , Pérez-Cruz L , Alvarado-Velázquez O , et al. Gravity survey of the Mesoamerican cuicuilco archaeological site, southern basin of Mexico. Arqueologia Iberoamericana, 2019, 42: 3- 8.
Valenta J , Dohnal J . 3D seismic travel time surveying a comparison of the time-term method and tomography (an example from an archaeological site). Journal of Applied Geophysics, 2007, 63 (1): 46- 58.
Wang C L , Lu W M , Wang H S , et al. A case study of magnetic survey and evaluation of wooden wrecks. Geophysical and Geochemical Exploration, 2018, 42 (4): 708- 711.
Wang Q S , Zhou W H , Wu C Z , et al. The application of microgra vimetry in archaeological engineering-prospection of underground palace of Mao Ling mausoleum of Ming dynasty. Progress in Geophysics, 1995, 10 (2): 85- 94.
Wu J J , G Y , Zhao J X . An allication of tem to archeological investigation for metal funerary obfects. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29 (S1): 47- 50. 47-50, 13
Xi D Y , Wan X L , Xue Y W , et al. Looking for relics of Jun kiln of Song dynasty with georadar. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (1): 112- 115.
Yan Y L , Ma X B , Di Q Y , et al. 2D resistivity inversion of perturbation in the layered-earth. Chinese Journal of Geophysics, 2004, 47 (6): 1139- 1144.
Yao D Q , Shao J , Chen A G , et al. Vestige of prehistoric earthquake to be found in Yangshao site of Xinjie, Lantian county, Shanxi province. Progress in Geophysics, 2012, 27 (2): 804- 808.
Yu T X . Study on geophysical prospecting new techniques and applications of Large ancient mausoleums (in Chinese). Hangzhou: Zhejiang University, 2019,
Yuan B Q , Liu S Y , Yu G M , et al. Gravity and magnetic field feature for archaeology in site of the emperor Qinshihuang mausoleum, China. Earth Science—Journal of China University of Geosciences, 2015, 40 (10): 1616- 1620.
Zhao W K , Tian G , Wang B B , et al. Archaeological geophysics-an emerging scientific archaeological prospection technique. Science, 2012, 64 (3): 13- 16.
Zhao W K , Tian G . Geophysical explorations on buried ruins of the ancient walls. Science, 2013, 65 (2): 38- 41.
Zong X , Wang X Y , Liu C S , et al. Experiments and applications of ground penetrating radar in the investigation of subsurface archaeological interest. Journal of Geo-Information Science, 2016, 18 (2): 272- 281.
别康, 石战结, 田钢. 2016. 电容耦合式电阻率法及其在城市遗址考古勘探中的应用. //2016中国地球科学联合学术年会论文集. 北京: 中国地球物理学会, 1.
曹伟, 刘青松, 卿昊, 等. 2021. 无人机磁测联合采样分析建立的预考古调查. //2021年中国地球科学联合学术年会论文集. 1.
文静 , , 光杰 , 等. 高频电磁法在考古勘探中的3D数值模拟研究. 地球物理学进展, 2023, 38 (3): 1305- 1316.
田宇 , 尚平 . 高密度电阻率法在葬墓考古的应用. 地球物理学进展, 2015, 30 (6): 2885- 2891.
, , 有利 , 等. 史前地震加速早期中国"河洛古国"的衰落. 中国科学: 地球科学, 2023, 53 (5): 1115- 1127.
宏耀 , 立敏 . 我国考古地球物理学的发展. 地球物理学报, 1997, 40 (S1): 379- 385.
宏耀 , 立敏 . 考古地球物理学. 北京: 科学出版社, 2000,
能韬 , 宝春 . 陶瓷材料地磁场古强度研究的可靠性探索. 地球物理学报, 2022, 65 (7): 2613- 2621.
奇霖 , 慧敏 , 光杰 , 等. 均匀半空间脉冲电流的TEM响应正演计算研究. 地球物理学进展, 2023, 38 (3): 1152- 1160.
淑玲 , 鸿雁 , 天亮 . 可控源音频大地电磁考古资料的地形校正、解释方法效果对比. 物探与化探, 2005, 29 (6): 541- 544. 541-544, 556
彦恒 , 光杰 , 锡伟 , 等. 宇宙线μ子探测技术在地球物理学中的应用. 地球物理学进展, 2021, 36 (2): 753- 758.
金鑫 , , 帮兵 , 等. 良渚遗址古水系调查中的综合地球物理方法. 浙江大学学报(工学版), 2011, 45 (5): 954- 960.
金鑫 , , 战结 . 西夏陵陪葬墓的地球物理考古勘探研究. 工程勘察, 2014, 42 (7): 87- 93.
化荣 . 电磁测深法原理. 北京: 地质出版社, 1990,
鸿雁 , 炳强 , 忠祥 , 等. 晋阳古城遗址考古地球物理特征. 地球物理学进展, 2008, 23 (4): 1291- 1298.
石战结, 田钢, 王帮兵, 等. 2016. 考古地球物理探测技术研究新进展. //2016中国地球科学联合学术年会论文集. 北京: 中国地球物理学会, 3.
传雷 , 维民 , 洪松 , 等. 磁法探测木质沉船的应用实例. 物探与化探, 2018, 42 (4): 708- 711.
谦身 , 文虎 , 传真 , 等. 微重力方法在考古工程中的应用——明茂陵地下陵殿探查. 地球物理学进展, 1995, 10 (2): 85- 94.
军杰 , 国印 , 敬洗 . 瞬变电磁技术探测古墓陪葬金属器皿的应用效果. 物探化探计算技术, 2007, 29 (S1): 47- 50. 47-50, 13
道瑛 , 新林 , 彦伟 , 等. 用地质雷达寻找宋代钧窑遗址. 岩石力学与工程学报, 2004, 23 (1): 112- 115.
永利 , 晓冰 , 青云 , 等. 层状介质二维电阻率扰动反演方法. 地球物理学报, 2004, 47 (6): 1139- 1144.
大全 , , 安国 , 等. 陕西蓝田新街仰韶遗址史前地震遗迹的发现和初析. 地球物理学进展, 2012, 27 (2): 804- 808.
余天祥. 2019. 大型古墓葬的地球物理探测新技术及应用研究[硕士论文]. 杭州: 浙江大学.
炳强 , 士毅 , 国明 , 等. 秦始皇帝陵遗址考古重磁力场特征. 地球科学——中国地质大学学报, 2015, 40 (10): 1616- 1620.
文轲 , , 帮兵 , 等. 新兴的科技考古勘探方法——考古地球物理. 科学, 2012, 64 (3): 13- 16.
文轲 , . 地下古城墙遗址的地球物理探测. 科学, 2013, 65 (2): 38- 41.
, 心源 , 传胜 , 等. 探地雷达在地下考古遗存探测中的实验与应用. 地球信息科学学报, 2016, 18 (2): 272- 281.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(7297 KB)

Accesses

Citation

Detail

Sections
Recommended

/