Overview of the current status of applications and development of controlled airgun vibration sources

TieNan ZHOU, Feng SUN, Yun LONG, XueFeng XING

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2265-2285.

PDF(15520 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(15520 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2265-2285. DOI: 10.6038/pg2025HH0505

Overview of the current status of applications and development of controlled airgun vibration sources

Author information +
History +

Abstract

Airgun source is an important tool for marine geophysical exploration, the construction of the gun body will be pre-injected into the release of high-pressure air into the water column, resulting in continuous oscillation until the rupture of the bubble, artificially generated energy-controllable seismic sub-wave, acquisition and analysis of sub-wave signals propagated underwater, high-resolution deep-earth exploration, and then complete the important task of oil and gas deposits prospecting and other important tasks. After decades of development, the international theory of airgun seismic source is becoming more and more mature, and a number of airgun seismic source products with excellent performance have been born, but the domestic start in this field is relatively late, and there is still a gap in technology compared with foreign countries, and there is no available domestic airgun seismic source. To address this situation, this paper firstly introduces the development history of airgun vibration source and underwater bubble motion theory, including the types and working principles of the existing mainstream airgun vibration source, introduces in detail the domestic and foreign geological exploration research based on airgun vibration source in recent years, and combines the current situation of airgun vibration source with its limitations, summarizes the current limitations of the development of China's airgun vibration source problems, and the future of the airgun vibration source of marine exploration. It also puts forward the prospect of the difficulties that may be faced in the process of localization of core equipment such as airgun seismic source in the future.

Key words

Airgun source / Seismic exploration / Underwater bubble motion theory / Domestic airgun research and development / Marine resources exploration

Cite this article

Download Citations
TieNan ZHOU , Feng SUN , Yun LONG , et al. Overview of the current status of applications and development of controlled airgun vibration sources[J]. Progress in Geophysics. 2025, 40(5): 2265-2285 https://doi.org/10.6038/pg2025HH0505

References

Besant W H. 1859. Hydrostatics and hydrodynamics.
Bois C, Allegre C J. The structure and dynamics of continental crust: The French ECORS programme. First Break, 1983, 1(5):
Brewer J A, Matthews D H, Warner M R, et al. BIRPS deep seismic reflection studies of the British Caledonides. Nature, 1983, 305(5931): 206- 210.
Chen H, Xiao Y F, Xue W Z, et al. Impact analysis of excitation and receiving factors about high-resolution acquisition of marine hydrate. Progress in Geophysics, 2023, 38(3): 1328- 1340.
Chen H F, Lin B H, Jin X, et al. The study on optimizing the excitation condition of large volume air gun source in reservoir. Earthquake Research in China, 2016, 32(2): 241- 248.
Chen H L, Yu G P. Computer simulation of single air gun wavelet. Geophysical Exploration Equipment, 2002,(4): 241- 244. 241-244, 291
Chen H L, Ning S N, Xiong J L, et al. Numerical simulation of air-gun array wavelet. Oil Geophysical Prospecting, 2003, 38(4): 363- 368.
Chen H L, Quan H Y, Liu J, et al. Simulation of far-field wavelet based on near-field measuring gun-array. Oil Geophysical Prospecting, 2005, 40(6): 703- 707.
Chen H L, Quan H Y, Yu G P, et al. Summary of airgun source theory and technology (1). Equipment for Geophysical Prospecting, 2008, 18(4): 211- 217.
Chen Y, Zhu R X. Proposed project of "Underground Bright Lump". Advances in Earth Science, 2005, 20(5): 485- 489.
Chen Y, Zhang X K, Qiu X L, et al. A new method for land artificial seismic wave excitation. Chinese Science Bulletin, 2007, 52(11): 1317- 1321.
Di B R, Tang B W, Chen H L, et al. Study on theoretical waveform from air guns. Journal of the University of Petroleum, China, 2003, 27(5): 32- 35.
Di H Z, Xie W X, Xu M. Seismic investigation of fine-scale upper crust structure along the northern East Pacific Rise. Chinese Journal of Geophysics, 2023, 66(4): 1618- 1633.
Gao Z H, Meng Q B, Duan Y C, et al. Repair technology of metal parts of BOLT long-life air gun. Equipment for Geophysical Prospecting, 2019, 29(4): 241- 244.
Gilmore F R. The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid. Pasadena, CA: California Institute of Technology, 1952
Gu S L. Introduction to modern marine seismic exploration source-Air gun system. China Petroleum and Chemical Standard and Quality, 2013, 34(5): 231.
Guo X, Zhang Y S, Liu X Z, et al. Development and prospects of active-source construction in Gansu Province. China Earthquake Engineering Journal, 2020, 42(5): 1146- 1150.
Huang X J, Wang Q J, He W H. Troubleshooting for Sleeve-type air gun array. Equipment for Geophysical Prospecting, 2010, 20(1): 21- 24.
Johansen T A, Ruud B O, Tømmerbakke R, et al. Seismic on floating ice: Data acquisition versus flexural wave noise. Geophysical Prospecting, 2019, 67(3): 532- 549.
Johnson D T. Understanding air-gun bubble behavior. Geophysics, 1994, 59(11): 1729- 1734.
Kirkwood J G, Bethe H A. The pressure wave produced by an underwater explosion. Office of Scientific Research and Development Report No. 588, 1942,
Leary P C, Malin P E, Phinney R A, et al. Systematic monitoring of millisecond travel time variations near Palmdale, California. Journal of Geophysical Research: Solid Earth, 1979, 84(B2): 659- 666.
Li H J, Dai L L. Development and applications of air-gun source. Equipment for Geophysical Prospecting, 2014, 24(1): 16- 22.
Li H J, Gao L, Gao B, et al. Introduction on the control system of SmartSource air-gun source. Equipment for Geophysical Prospecting, 2017, 27(5): 311- 316.
Li J X. 2013. The air-gun subwave simulation experiment based on ideal gas model[Master's thesis] (in Chinese). Changsha: Central South University.
Li S J. 2020. Numerical simulation of the bubble motion characteristics of high-pressure air gun[Master's thesis] (in Chinese). Harbin: Harbin Engineering University.
Li X X, Wang J H, Zhang J M, et al. Design and application of air-gun arrays in marine seismic exploration. Acta Petrolei Sinica, 2012a, 33(S1): 142- 148.
Li X X, Wang J H, Yang K, et al. A study on optimization of seismic air-gun array source and its application in offshore deep water. China Offshore Oil and Gas, 2012b, 24(3): 1- 6. 1-6, 16
Lin J M. 2008. Research on long offset seismic signal detection and exploration based on artificial sources[Ph. D. thesis] (in Chinese). Hefei: University of Science and Technology of China.
Lin Y T. Three-dimensional propagation of seismic airgun signals in the Mississippi Canyon area of the Gulf of Mexico. JASA Express Lett., 2021, 1(2): 026001.
Liu C Y, Yang H F, Yang W, et al. Effects of reservoir water level changes on the characteristics of airgun wavelets in Binchuan, Yunnan. Chinese Journal of Geophysics, 2024, 67(11): 4160- 4170.
Liu M Y. Design and application of air gun source control system. Computer Knowledge and Technology, 2023, 19(5): 102- 104.
Lynner C, van Avendonk H J A, Bécel A, et al. The Eastern North American margin community seismic experiment: An amphibious active-and passive-source dataset. Seismological Research Letters, 2020, 91(1): 533- 540.
MONA LISA Working Group. MONA LISA-Deep seismic investigations of the lithosphere in the southeastern North Sea. Tectonophysics, 1997, 269(1-2): 1- 19.
Okaya D, Henrys S, Stern T. Double-sided onshore-offshore seismic imaging of a plate boundary: "super-gathers" across South Island, New Zealand. Tectonophysics, 2002, 355(1-4): 247- 263.
Pellerin C L M, Christensen N I. Interpretation of crustal seismic velocities in the San Gabriel-Mojave region, southern California. Tectonophysics, 1998, 286(1-4): 253- 271.
Qin J J, Feng S Y, Ji J F, et al. Stack imaging of non-longitudinal bending line of land reflection seismic data generated by airgun source. Acta Seismologica Sinica, 2020, 42(5): 592- 603.
Qiu Y C, Guo Y, Zhu Y Q. Digital marine geophysical air gun source control system. Science & Technology Information, 2016, 14(34): 16- 19.
Quan Y J, Guan H X, Zhao M H, et al. Deep seismic data analysis of ridge jumps in the South China Sea. Chinese Journal of Geophysics, 2024, 67(6): 2364- 2377.
Rayleigh L. Ⅷ. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94- 98.
Reasenberg P, Aki K. A precise, continuous measurement of seismic velocity for monitoring in situ stress. Journal of Geophysical Research, 1974, 79(2): 399- 406.
Ruan F M, Wu Q Y, Wang B, et al. Development and application of high precision seismic acquisition equipment in CNOOC. China Offshore Oil and Gas, 2017, 29(3): 19- 24.
Safar M H. The radiation of acoustic waves from an air-gun. Geophysical Prospecting, 1976, 24(4): 756- 772.
Schulze-Gattermann R. Physical Aspects of the "airpulser" as a Seismic Energy Source. Geophysical Prospecting, 1972, 20(1): 155- 192.
Shiraishi K, No T, Gou F J. Seismic reflection imaging of deep crustal structures via reverse time migration using offshore wide-angle seismic data on the eastern margin of the Sea of Japan. Earth, Planets and Space, 2022, 74(1): 28.
Su J B, Yang W, Li X B, et al. Co-seismic velocity changes with Yunnan Yangbi MS6.4 Earthquake measured by airgun source. Chinese Journal of Geophysics, 2022, 65(2): 649- 662.
Su X. 2020. Research on optimization design method of three-dimensional delay air gun array[Master's thesis] (in Chinese). Beijing: China University of Geosciences (Beijing).
Tan Y J. Study of a combinated air-gun hypocenter for ocean exploration. Noise and Vibration Control, 2010, 30(4): 29- 32.
Tang J. 2008. Study on characteristics of artificial source and signal detection in regional-scale deep exploration[Ph. D. thesis] (in Chinese). Hefei: University of Science and Technology of China.
Tian X F, Wang F Y, Liu B F, et al. Upper crustal velocity structure along the Yangtze River from Ma'anshan to Anqing. Earthquake Research in China, 2016, 32(2): 390- 396.
Wang B, Wu G H, Su Y J, et al. Site selection and construction process of Binchuan earthquake signal transmitting seismic station and its preliminary observation result. Journal of Seismological Research, 2015, 38(1): 1- 6.
Wang B S, Ge H K, Yang W, et al. Transmitting seismic station monitors fault zone at depth. Eos, Transactions American Geophysical Union, 2012, 93(5): 49- 50.
Wang B S, Ge H K, Wang B, et al. Practices and advances in exploring the subsurface structure and its temporal evolution with repeatable artificial sources. Earthquake Research in China, 2016, 32(2): 168- 179.
Wang F F, Liu H S. Simulating the signature produced by a single airgun under real gas conditions. Applied Geophysics, 2014, 11(1): 80- 88.
Wang F F. 2015. Research on simulation and design of signature produced by marine multi-level air-gun array[Ph. D. thesis] (in Chinese). Qingdao: Ocean University of China.
Wang L, Chen Y, Yu D Y, et al. Seismic airgun the key technology of future urban underground space exploration. Chinese Journal of Geophysics, 2022, 65(12): 4750- 4759.
Wang L M. 2010. Simulation study on signature stimulated by air-guns in conditions of Van der Waals Gas[Ph. D. thesis] (in Chinese). Xi'an: Chang'an University.
Wehner D, Svensson U P, Landrϕ M. Acoustic signals in air and water generated by very shallow marine seismic sources: An experimental study. The Journal of the Acoustical Society of America, 2020, 147(2): 1092- 1103.
Wei B, Su J B, Wang H T, et al. Site selection and construction of Hutubi airgun source signal transmitting seismic station and its characteristic of source. Earthquake Research in China, 2016, 32(2): 222- 230.
Xia J. 2017. Study on the characteristics of large volume air-gun source[Ph. D. thesis] (in Chinese). Harbin: Institute of Engineering Mechanics, China Earthquake Administration.
Xing Z H, Cai D Z, Zhang L, et al. Matched filtering method for single channel seismic de-ghosting based on shaping regularized nonstationary regression technology and its application. Progress in Geophysics, 2023, 38(1): 502- 512.
Xu J J, Cai H T, Jin X, et al. Signal detection of large volume air-gun source excitation in the fixed field of the Yangtse River. Earthquake Research in China, 2016, 32(2): 379- 389.
Xu Y H, Wang B S, Wang W T. Characteristics of air-gun signals excited in the Yangtze River from analysis of permanent stations' data. Earthquake Research in China, 2016, 32(2): 282- 294.
Yang B. Comparison of explosive source and vibroseis in coalfield 2D seismic exploration. Science & Technology Information, 2015, 13(31): 242- 243.
Yang C, Liu H S, Zhao M X, et al. Optimization design of the broadband stereo gun array. Marine Geology Frontiers, 2023, 39(10): 85- 92.
Yang G L, Zhu Y Q. Air-gun wavelet simulation for deep curst exploration. Journal of Geodesy and Geodynamics, 2008, 28(6): 91- 95.
Yang H. 2015. Numerical study of air guns and performance optimization of air-gun array[Master's thesis] (in Chinese). Harbin: Harbin Engineering University.
Yang W, Wang B S, Zhang Y P, et al. Review on advances in the detection technology using airgun source fired in continental water. Chinese Journal of Geophysics, 2021, 64(12): 4252- 4268.
Yao D, Yang Y, Hu Y, et al. Analysis of the effect and safety of dynamite source in seismic exploration. Industrial Safety and Environmental Protection, 2013, 39(12): 37- 39.
Yu G P, Wei X J, Li X. Brief introduction of new generation Bolt APG type's airgun. Equipment for Geophysical Prospecting, 2003, 13(1): 65- 67.
Zeng X J, Zhai J F, Wei C L. Oil and gas resource survey technology and its application in the northern waters of the South China Sea-Seismic wavelet detection and simulation analysis. Journal of Ocean Technology, 2019, 38(2): 98- 104.
Zhang A M, Li S M, Cui P, et al. A unified theory for bubble dynamics. Physics of Fluids, 2023, 35(3): 033323.
Zhang G P. 2019. Study on air-gun source bubble characteristics and the simulation of it's signature[Master's thesis] (in Chinese). Harbin: Institute of Engineering Mechanics, China Earthquake Administration, doi: 10.27490/d.cnki.ggjgy.2019.000045.
Zhang S, Wang S P, Zhang A M, et al. Numerical study on attenuation of bubble pulse through tuning the air-gun array with the particle swarm optimization method. Applied Ocean Research, 2017, 66: 13- 22.
Zhang S. 2018. Study on underwater air gun bubble motion and the pressure characteristics of the fluid field[Ph. D. thesis] (in Chinese). Harbin: Harbin Engineering University.
Zhang S Y. Development and prospect of an air gun source control system. Marine Geology Frontiers, 2019, 35(9): 76- 82.
Zhang X D. 2021. Numerical simulation of air gun wavelet and optimization design of tuning array[Master's thesis] (in Chinese). Shenyang: Shenyang University of Technology, doi: 10.27322/d.cnki.gsgyu.2021.000408.
Zhang X Y, Yuan X G, Zhu S H, et al. The open quasi-static thermodynamic system in the condition of Van der Waals gas and simulation of air gun signature. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(4): 458- 461.
Zhang Y P, Wang B S, Wang W T, et al. Preliminary result of tomography from permanent stations in the Anhui air-gun experiment. Earthquake Research in China, 2016, 32(2): 331- 342.
Zhang Y P, Wang W T, Yang W, et al. Three-dimensional crustal velocity structure beneath the southern segment of the Tan-Lu fault revealed by joint inversion from multi-source data. Chinese Journal of Geophysics, 2023, 66(6): 2404- 2419.
Zhang Y S, Guo X, Qin M Z, et al. The construction of active source repeated monitoring in the Qilian Mountains of Gansu Province. Earthquake Research in China, 2016, 32(2): 209- 215.
Zhou B H, Liu W B. The development and application of air-gun source. Equipment for Geophysical Prospecting, 1998a, 8(1): 1- 6.
Zhou B H, Liu W B. The development and application of air-gun source(2). Equipment for Geophysical Prospecting, 1998b, 8(2): 1- 5. 1-5, 9
Ziolkowski A. A method for calculating the output pressure waveform from an air gun. Geophys. J. R. Astr. Soc., 1970, 21(2): 137- 161.
Ziolkowski A, Parkes G, Hatton L, et al. The signature of an air gun array: Computation from near-field measurements including interactions. Geophysics, 1982, 47(10): 1413- 1421.
Ziolkowski A. Measurement of air-gun bubble oscillations. Geophysics, 1998, 63(6): 2009- 2024.
, 云飞, 维忠, 等. 海洋水合物高分辨率采集激发及接收因素影响分析. 地球物理学进展, 2023, 38(3): 1328- 1340.
惠芳, 彬华, , 等. 水库大容量气枪震源激发条件优化实验研究. 中国地震, 2016, 32(2): 241- 248.
浩林, 书年, 金良, 等. 气枪阵列子波数值模拟. 石油地球物理勘探, 2003, 38(4): 363- 368.
浩林, 海燕, , 等. 基于近场测量的气枪阵列模拟远场子波. 石油地球物理勘探, 2005, 40(6): 703- 707.
浩林, 海燕, 国平, 等. 气枪震源理论与技术综述(上). 物探装备, 2008, 18(4): 211- 217.
, 日祥. 设立"地下明灯研究计划"的建议. 地球科学进展, 2005, 20(5): 485- 489.
, 先康, 学林, 等. 陆地人工激发地震波的一种新方法. 科学通报, 2007, 52(11): 1317- 1321.
帮让, 博文, 浩林, 等. 气枪震源的理论子波研究. 石油大学学报(自然科学版), 2003, 27(5): 32- 35.
会哲, 文鑫, . 东太平洋北部洋中脊上地壳精细结构地震探测. 地球物理学报, 2023, 66(4): 1618- 1633.
增会, 庆兵, 杨春, 等. BOLT长命气枪金属部件修复技术. 物探装备, 2019, 29(4): 241- 244.
双利. 现代海洋地震勘探震源——气枪系统介绍. 中国石油和化工标准与质量, 2013, 34(5): 231.
, 元生, 旭宙, 等. 甘肃主动源建设发展与展望. 地震工程学报, 2020, 42(5): 1146- 1150.
晓军, 庆江, 文华. Sleeve型气枪阵列常见故障及解决方法. 物探装备, 2010, 20(1): 21- 24.
海军, 丽丽. 气枪震源应用技术的发展. 物探装备, 2014, 24(1): 16- 22.
海军, , , 等. SmartSource气枪震源控制系统简介. 物探装备, 2017, 27(5): 311- 316.
李建霞. 2013. 基于理想气体模型的气枪震源子波模拟实验研究[硕士论文]. 长沙: 中南大学.
李松洁. 2020. 高压气枪气泡运动特性数值模拟研究[硕士论文]. 哈尔滨: 哈尔滨工程大学.
绪宣, 建花, 金淼, 等. 海上气枪震源阵列优化组合设计与应用. 石油学报, 2012a, 33(S1): 142- 148.
绪宣, 建花, , 等. 海上深水区气枪震源阵列优化组合研究与应用. 中国海上油气, 2012b, 24(3): 1- 6. 1-6, 16
林建民. 2008. 基于人工震源的长偏移距地震信号检测和探测研究[博士论文]. 合肥: 中国科学技术大学.
春禹, 宏峰, , 等. 源区水位对云南宾川大容量气枪震源子波特性的影响. 地球物理学报, 2024, 67(11): 4160- 4170.
梦雅. 气枪震源控制系统设计及应用. 电脑知识与技术, 2023, 19(5): 102- 104.
晶晶, 少英, 计法, 等. 非纵弯线气枪震源陆地反射资料叠加成像. 地震学报, 2020, 42(5): 592- 603.
永成, , 耀强. 数字式海洋物探气枪震源控制系统. 科技资讯, 2016, 14(34): 16- 19.
余杰, 慧心, 明辉, 等. 南海洋脊跃迁的深地震探测数据分析. 地球物理学报, 2024, 67(6): 2364- 2377.
福明, 秋云, , 等. 中国海油高精度地震勘探采集装备技术研制与应用. 中国海上油气, 2017, 29(3): 19- 24.
金波, , 孝宾, 等. 基于气枪震源信号的云南漾濞MS6.4地震前后波速变化. 地球物理学报, 2022, 65(2): 649- 662.
苏欣. 2020. 立体延迟气枪阵列的优化设计方法研究[硕士论文]. 北京: 中国地质大学(北京).
拥军. 海洋气枪震源组合的研究与应用. 噪声与振动控制, 2010, 30(4): 29- 32.
唐杰. 2008. 区域尺度深部探测中的人工源震源特性及信号检测研究[博士论文]. 合肥: 中国科学技术大学.
晓峰, 夫运, 宝峰, 等. 马鞍山-铜陵-安庆长江沿线上地壳速度结构成像. 中国地震, 2016, 32(2): 390- 396.
, 国华, 有锦, 等. 宾川地震信号发射台的选址、建设及初步观测结果. 地震研究, 2015, 38(1): 1- 6.
宝善, 洪魁, , 等. 利用人工重复震源进行地下介质结构及其变化研究的探索和进展. 中国地震, 2016, 32(2): 168- 179.
王风帆. 2015. 海上立体气枪阵列信号模拟与设计方法研究[博士论文]. 青岛: 中国海洋大学.
, , 大勇, 等. 未来城市地下空间探测的关键技术——大陆气枪震源. 地球物理学报, 2022, 65(12): 4750- 4759.
王立明. 2010. 范氏气体下气枪激发子波信号模拟研究[博士论文]. 西安: 长安大学.
, 金波, 海涛, 等. 新疆呼图壁人工水体大容量气枪信号发射台性能研究. 中国地震, 2016, 32(2): 222- 230.
夏季. 2017. 大容量气枪震源特性研究[博士论文]. 哈尔滨: 中国地震局工程力学研究所.
子浩, 砥柱, , 等. 基于整形正则化非平稳回归技术的匹配滤波压制单道地震鬼波方法及应用. 地球物理学进展, 2023, 38(1): 502- 512.
嘉隽, 辉腾, , 等. 大容量气枪震源长江定点激发信号检测. 中国地震, 2016, 32(2): 379- 389.
逸鹤, 宝善, 伟涛. 利用固定台站分析长江激发气枪信号特征. 中国地震, 2016, 32(2): 282- 294.
. 煤田二维地震勘探炸药震源和可控震源的对比研究. 科技资讯, 2015, 13(31): 242- 243.
, 怀山, 明鑫, 等. 宽频立体枪阵优化设计. 海洋地质前沿, 2023, 39(10): 85- 92.
光亮, 元清. 气枪震源深部探测子波模拟. 大地测量与地球动力学, 2008, 28(6): 91- 95.
羊慧. 2015. 气枪震源子波研究及气枪阵列性能优化[硕士论文]. 哈尔滨: 哈尔滨工程大学.
, 宝善, 云鹏, 等. 陆地水体气枪震源探测技术回顾与进展. 地球物理学报, 2021, 64(12): 4252- 4268.
, , , 等. 地震勘探中炸药震源的效果及安全性分析. 工业安全与环保, 2013, 39(12): 37- 39.
国平, 学进, . 新一代Bolt APG型气枪简介. 物探装备, 2003, 13(1): 65- 67.
宪军, 继锋, 成龙. 南海北部海域油气资源调查技术及其应用研究——震源子波检测及模拟分析. 海洋技术学报, 2019, 38(2): 98- 104.
张国平. 2019. 气枪气泡特性及子波数值模拟研究[硕士论文]. 哈尔滨: 中国地震局工程力学研究所, doi: 10.27490/d.cnki.ggjgy.2019.000045.
张帅. 2018. 水下高压气枪气泡运动及其流场压力特性研究[博士论文]. 哈尔滨: 哈尔滨工程大学.
世阳. 空气枪震源控制系统的发展和预测. 海洋地质前沿, 2019, 35(9): 76- 82.
张晓东. 2021. 气枪子波数值模拟及调谐阵列优化设计方法研究[硕士论文]. 沈阳: 沈阳工业大学, doi: 10.27322/d.cnki.gsgyu.2021.000408.
雪阳, 修贵, 世华, 等. 范氏气体准静态开放式系统与气枪子波模拟. 物探化探计算技术, 2014, 36(4): 458- 461.
云鹏, 宝善, 伟涛, 等. 安徽气枪实验固定台层析成像初步结果. 中国地震, 2016, 32(2): 331- 342.
云鹏, 伟涛, , 等. 联合多源数据反演郯庐断裂带南段地壳三维速度结构. 地球物理学报, 2023, 66(6): 2404- 2419.
元生, , 满忠, 等. 甘肃祁连山主动源重复探测项目建设及震源重复性分析. 中国地震, 2016, 32(2): 209- 215.
宝华, 威北. 气枪震源的发展与使用分析(上). 物探装备, 1998a, 8(1): 1- 6.
宝华, 威北. 气枪震源的发展与使用分析(下). 物探装备, 1998b, 8(2): 1- 5. 1-5, 9

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(15520 KB)

Accesses

Citation

Detail

Sections
Recommended

/