Study on gas-water characteristics and gas-bearing properties of Upper Paleozoic Shan23-He8 member reservoir in middle area of Jingbian Gas Field

XingGuan CHENG, ZiWei ZHANG, Nan CHEN, YanBin ZHANG, ZiAng MENG, XiaoLi ZHANG, YaJun LI, GaoRun ZHONG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 176-187.

PDF(10853 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10853 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 176-187. DOI: 10.6038/pg2025HH0517

Study on gas-water characteristics and gas-bearing properties of Upper Paleozoic Shan23-He8 member reservoir in middle area of Jingbian Gas Field

Author information +
History +

Abstract

In order to clarify the Nuclear Magnetic Resonance(NMR) characteristics and influencing factors of gas-water layer of He8 member in southeast Sulige of Ordos Basin, two-dimensional NMR technology was used to characterize the gas-water layer characteristics, combined with the analysis results of formation water, reservoir physical properties, formation anisotropy and gas supply, the NMR response characteristics of the gas-water layer of He8 member in the study area were clarified. The relationship between formation water, pore type, pore throat structure, formation anisotropy, gas supply and reservoir gas bearing is analyzed. The results show that: ①The formation water in the study area is mainly CaCl2 type, but the salinity difference is strong, and the distribution is 3669~325000 mg/L. The water type is all CaCl2, the pH value is 4.21~8.98, and it is weakly acidic.[r(Na+)/r(Cl-)] was less than 0.61, the coefficient of chloride to magnesium[r(Cl-)/r(Mg2+)] was greater than 7.0, and the coefficient of magnesium to calcium[r(Mg2+)/r(Both Ca2+)] are less than 0.69, and the metamorphic coefficients[r(Cl--Na+)/r(Mg2+)] are more than 0.47, indicating that the formation water is in a relatively stagnant reduction state, the formation is strongly sealed, and the natural gas is well preserved. ②The distribution of gas-water layers in He8 member in the study area is complex, and two-dimensional nuclear magnetic resonance technology can effectively distinguish the gas-water layers. ③The pore types of the reservoir in He8 member are mainly residual intergranular pores and feldspar solution pores, with porosity ranging from 2.70% to 14.48% and permeability ranging from 0.04 to 15.92×10-3 μm2. The reservoir physical properties affect the gas bearing properties of the reservoir, and the porosity and permeability of the reservoir are greater than 7.0% and 0.2×10-3 μm2, respectively. The porosity and permeability of the gas-bearing and differential gas layers are 5%~9.5% and (0.02~0.7)×10-3 μm2, respectively, while the porosity and permeability of the dry layer are less than 5% and 0.1×10-3 μm2, respectively. The anisotropy of the gas layer is between 15%~20%, and that of the dry layer is less than 6%.

Key words

Gas-water layer / He8 member / Nuclear Magnetic Resonance(NMR) / Gas bearing / Anisotropy

Cite this article

Download Citations
XingGuan CHENG , ZiWei ZHANG , Nan CHEN , et al . Study on gas-water characteristics and gas-bearing properties of Upper Paleozoic Shan23-He8 member reservoir in middle area of Jingbian Gas Field[J]. Progress in Geophysics. 2025, 40(1): 176-187 https://doi.org/10.6038/pg2025HH0517

References

Bai L H , Liu B , Chi Y A , et al. 2D NMR studies of fluids in organic-rich shale from the Qingshankou Formation, Songliao Basin. Oil & Gas Geology, 2021, 42 (6): 1389- 1400.
Bi M W , Sun J P , Chen S Y , et al. Multiscale description and controlling factors analyses of fluvial tight reservoir: a case study on the 8th member of Lower Shihezi Formation in Sulige gas field, Ordos Basin. Journal of Palaeogeography, 2023, 25 (3): 684- 700.
Chen Z J. 2016. Research on differentces of reservoir forming factors and reservoir controlling factors in He8 and Shan1 Formation, Sulige gas field[Ph. D. thesis](in Chinese). Xi'an: Northwest University.
Chen Z J , Ren Z L , Cao Z P , et al. The gas controlling factors of he 8 and shan 1 section, Sulige Gasfield. Journal of Northwest University (Natural Science Edition), 2017, 47 (2): 253- 258.
Dai J X , Li J , Luo X , et al. Alkane carbon isotopic composition and gas source in giant gas fields of Ordos Basin. Acta Petrolei Sinica, 2005, 26 (1): 18- 26.
Dou W T , Liu X S , Wang T . The origin of formation water and the regularity of gas and water distribution for the Sulige gas field, Ordos Basin. Acta Petrolei Sinica, 2010, 31 (5): 767- 773.
Fu J H , Fan L Y , Liu X S , et al. Gas accumulation conditions and key exploration & development technologies in Sulige gas field. Acta Petrolei Sinica, 2019, 40 (2): 240- 256.
Hu X L , Li J , Zhang M , et al. Judge gas reservoir preservation by chemical characteristic parameters of Formation water: examples from Hutubi and Huo'erguosi oil-gas fields. Natural Gas Exploration and Development, 2008, 31 (4): 23- 26.
Lan C L , Zhang J F , He S L , et al. Gas and water pay recognition of water-producing reservoir with low permeability and resistivity: a case from the Xujiahe formation in Guang'an Gasfield of Sichuan Basin, Southwestern China. Earth Science-Journal of China University of Geosciences, 2010, 35 (6): 1053- 1059.
Li J , Zhao J Z , Wei X S , et al. Gas expansion caused by formation uplifting and its effects on tight gas accumulation: a case study of Sulige gas field in Ordos Basin, SW China. Petroleum Exploration and Development, 2022, 49 (6): 1094- 1106.
Liu F T , Li R X , Liu X S , et al. Study of gas accumulation under "source control" in Western Sulige Gas Field, Ordos Basin. Acta Sedimentologica Sinica, 2019, 37 (6): 1129- 1139.
Ning C Q , Zhou M S , Cheng J , et al. Application of 2D NMR logging in fluid identification of glutenite reservoir. Lithologic Reservoirs, 2021, 33 (1): 267- 274.
Shi Y J , Cai W Y , Liu G Q , et al. Full diameter core 2D NMR spectrum characteristics of pore fluid in shale oil reservoir and evaluation method. China Petroleum Exploration, 2023, 28 (3): 132- 144.
Yan Y Z , Zhang X L , Fei S X , et al. Identification of low resistance gas reservoir of section He8 in the southeast of Sulige, Ordos basin. Progress in Geophysics, 2014, 29 (3): 1326- 1331.
Yang H , Wei X S . New progress achieved by natural gas exploration in Sulige area. Natural Gas Industry, 2007, 27 (12): 6- 11.
Yang R C , Dong L , Zhang J , et al. Origin, distribution and controlling factors of stratigraphic water in the western Sulige Gas field. Acta Sedimentologica Sinica, 2022, 40 (1): 267- 280.
Yang S D , Wu T , Ren X F , et al. Application of 2D NMR logging in tight gas reservoir of Ordos Basin. Well Logging Technology, 2016, 40 (3): 343- 347.
Zhang L , Luo M B , Wen J A . Study on geochemical characteristics and distribution law of formation water of Xujiahe formation in Central Sichuan depression. Contemporary Chemical Industry, 2022, 51 (6): 1416- 1419. 1416-1419, 1424
Zhao J E , Ge X M , Xiao Y F , et al. Forward simulation and characteristic analysis on the low field NMR transverse relaxation response of fractured shale reservoir. Chinese Journal of Geophysics, 2023, 66 (6): 2621- 2630.
Zhao X Q , Jin Y N , Yu X , et al. Conductivity model of shale based on two-dimensional NMR pore fluid distribution. Well Logging Technology, 2023, 47 (1): 29- 35.
Zhao Y G . A new method for logging identification and evaluation of low-resistivity gas layers: a case study of the Dongsheng Gasfield in the Ordos Basin. Natural Gas Industry, 2020, 40 (9): 47- 54.
Zhu H Y , Xu X , An L Z , et al. An experimental on occurrence and mobility of pore water in tight gas reservoirs. Acta Petrolei Sinica, 2016, 37 (2): 230- 236.
Zhu T , Li Z B , Liu Y , et al. Diagenesis and its influence on reservoir in He 8 Member of Su 75 block in northern Sulige Gas Field, Ordos Basin. Natural Gas Geoscience, 2023, 34 (10): 1739- 1751.
Zhu W Q , Gao S S , Shen J , et al. A new method for identifying gas-water layer in tight sandstone gas reservoirs: case study of Su76 well area. Natural Gas Geoscience, 2019, 30 (11): 1629- 1638.
龙辉 , , 亚奥 , 等. 二维核磁共振技术表征页岩所含流体特征的应用——以松辽盆地青山口组富有机质页岩为例. 石油与天然气地质, 2021, 42 (6): 1389- 1400.
明威 , 娇鹏 , 世悦 , 等. 多尺度河流相致密砂岩储集层表征及控制因素分析: 以苏里格气田下石盒子组8段为例. 古地理学报, 2023, 25 (3): 684- 700.
陈占军. 2016. 苏里格气田不同区带盒8段、山1段气藏成藏要素差异性及含气控制因素研究[博士论文]. 西安: 西北大学.
占军 , 战利 , 展鹏 , 等. 苏里格大气田盒8段、山1段气藏含气控制因素研究. 西北大学学报(自然科学版), 2017, 47 (2): 253- 258.
金星 , , , 等. 鄂尔多斯盆地大气田的烷烃气碳同位素组成特征及其气源对比. 石油学报, 2005, 26 (1): 18- 26.
伟坦 , 新社 , . 鄂尔多斯盆地苏里格气田地层水成因及气水分布规律. 石油学报, 2010, 31 (5): 767- 773.
金华 , 立勇 , 新社 , 等. 苏里格气田成藏条件及勘探开发关键技术. 石油学报, 2019, 40 (2): 240- 256.
绪龙 , , , 等. 地层水化学特征参数判断气藏保存条件——以呼图壁、霍尔果斯油气田为例. 天然气勘探与开发, 2008, 31 (4): 23- 26.
朝利 , 君峰 , 顺利 , 等. 低渗低阻产水气藏气水层识别: 以广安气田须家河组为例. 地球科学——中国地质大学学报, 2010, 35 (6): 1053- 1059.
, 靖舟 , 新善 , 等. 地层抬升引发的天然气膨胀及其聚集效应——以鄂尔多斯盆地苏里格气田为例. 石油勘探与开发, 2022, 49 (6): 1094- 1106.
福田 , 荣西 , 新社 , 等. 鄂尔多斯盆地苏里格西部气田"源控"主导的天然气成藏研究. 沉积学报, 2019, 37 (6): 1129- 1139.
从前 , 明顺 , , 等. 二维核磁共振测井在砂砾岩储层流体识别中的应用. 岩性油气藏, 2021, 33 (1): 267- 274.
玉江 , 文渊 , 国强 , 等. 页岩油储层孔隙流体的全直径岩心二维核磁共振图谱特征及评价方法. 中国石油勘探, 2023, 28 (3): 132- 144.
媛子 , 小莉 , 世祥 , 等. 鄂尔多斯盆地苏东南地区盒8段低阻气层识别. 地球物理学进展, 2014, 29 (3): 1326- 1331.
, 新善 . 鄂尔多斯盆地苏里格地区天然气勘探新进展. 天然气工业, 2007, 27 (12): 6- 11.
仁超 , , , 等. 苏里格气田西区地层水成因、分布规律与控制因素. 沉积学报, 2022, 40 (1): 267- 280.
双定 , , 小锋 , 等. 二维核磁共振测井在鄂尔多斯盆地致密气藏的应用. 测井技术, 2016, 40 (3): 343- 347.
, 谋兵 , 健安 . 川中凹陷须家河组地层水地球化学特征及分布规律研究. 当代化工, 2022, 51 (6): 1416- 1419. 1416-1419, 1424
吉儿 , 新民 , 玉峰 , 等. 含裂缝页岩核磁共振横向弛豫响应正演模拟及T2谱特征分析. 地球物理学报, 2023, 66 (6): 2621- 2630.
小青 , 永年 , , 等. 基于二维核磁共振孔隙流体分布的页岩导电模型. 测井技术, 2023, 47 (1): 29- 35.
永刚 . 低阻气层测井识别和评价新方法——以鄂尔多斯盆地东胜气田为例. 天然气工业, 2020, 40 (9): 47- 54.
华银 , , 来志 , 等. 致密气藏孔隙水赋存状态与流动性实验. 石油学报, 2016, 37 (2): 230- 236.
, 祖兵 , , 等. 鄂尔多斯盆地苏里格气田北部苏75区块盒8段成岩作用及其对储层的影响. 天然气地球科学, 2023, 34 (10): 1739- 1751.
文卿 , 树生 , , 等. 致密砂岩气藏气水层识别新方法——以苏76井区为例. 天然气地球科学, 2019, 30 (11): 1629- 1638.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(10853 KB)

Accesses

Citation

Detail

Sections
Recommended

/