Research status of geothermal energy detection technology in middle-deep depths in China

Kuan CHANG, QianJiang ZHANG, QiYun JIANG, Tao GUO, WenBin YIN, Jie LI, Hui TAN, YuanNing PAN, Xin MA

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 54-69.

PDF(3528 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(3528 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 54-69. DOI: 10.6038/pg2025HH0524

Research status of geothermal energy detection technology in middle-deep depths in China

Author information +
History +

Abstract

As a green, low-carbon, safe, high-quality and recyclable renewable energy, geothermal energy is of great significance to the adjustment of China's energy structure and the realization of the goal of "double carbon". As an environmentally friendly and non-destructive method, geophysical methods are widely used in the exploration of middle-deep geothermal resources, which can effectively detect deep hidden fault structures and obtain important information such as strata and buried depth. This paper systematically investigates the research and application status of common geophysical methods and exploration equipment at home and abroad in the detection of geothermal energy in medium and deep layers, analyzes the advantages of each geophysical detection method under its applicable conditions, and summarizes the research ideas of the detection of geothermal resources in medium and deep layers. According to the application examples of geophysical detection methods in geothermal areas, the adaptability, effectiveness and accuracy of geophysical detection methods in the detection of geothermal energy in medium and deep layers are expounded.

Key words

Medium and deep geothermal energy / Comprehensive geophysical prospecting method / Exploration equipment / Research status

Cite this article

Download Citations
Kuan CHANG , QianJiang ZHANG , QiYun JIANG , et al . Research status of geothermal energy detection technology in middle-deep depths in China[J]. Progress in Geophysics. 2025, 40(1): 54-69 https://doi.org/10.6038/pg2025HH0524

References

Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bulletin of the Earthquake Research Institute, 1957, 35: 415- 456.
Ars J M, Tarits P, Hautot S, et al. Joint inversion of gravity and surface wave data constrained by magnetotelluric: application to deep geothermal exploration of crustal fault zone in felsic basement. Geothermics, 2019, 80: 56- 68.
Cagniard L. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 1953, 18(3): 605- 635.
Cao R, Dor J, Li Y B, et al. Occurrence characteristics, development status, and prospect of deep high-temperature geothermal resources in China. Chinese Journal of Engineering, 2022, 44(10): 1623- 1631.
Cao Y R, Song T, Han H Q, et al. Exploration of deep geothermal energy resources with wide field electromagnetic method. Geophysical and Geochemical Exploration, 2017, 41(4): 678- 683.
Capon J. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 1969, 57(8): 1408- 1418.
Chen C X, Yan J Y, Zhou W Y, et al. Status and prospects of geophysical method used in geothermal exploration. Progress in Geophysics, 2020, 35(4): 1223- 1231.
Chen J B, Su J B, Chen J, et al. The application of geophysical prospecting methods to geothermal well exploration of Chishanhu area, Jurong City, Jiangsu province. Geophysical and Geochemical Exploration, 2014, 38(6): 1172- 1175. 1172-1175, 1185
Chen W Y, Xue G Q, Zhao P, et al. SOTEM exploration and reservoir structure analysis of Yangbajain geothermal field, Xizang. Chin. J. Geophys., 2023, 66(11): 4805- 4816.
Chen X, Li D C, Xu Z H. Application of seismic exploration in terrestrial heat survey. Geotechnical Investigation & Surveying, 2008,(12): 57- 59.
Cheng Z P, Lei M, Li S, et al. Research on time-frequency electromagnetic method detection of deep karst thermal reservoir and prediction of favorable area in Dongli Lake of Tianjin. North China Geology, 2023, 46(2): 1- 8.
Di Q Y, Fang G Y, Zhang Y M. Research of the Surface Electromagnetic Prospecting (SEP) system. Chin. J. Geophys., 2013, 56(11): 3629- 3639.
Di Q Y, Xu C, Fu C M, et al. Surface electromagnetic prospecting system (SEP) contrast test in Caosiyao molybdenum mine, Inner Mongolia. Chin. J. Geophys., 2015, 58(8): 2654- 2663.
Dong Y, Li G H, Gao P J, et al. The application of fretting exploration technology in the exploration of middle and deep clean energy. Geophysical and Geochemical Exploration, 2020, 44(6): 1345- 1351.
Fu W, Xu P F, Ling S Q, et al. Application of the microtremor survey method to geothermal exploration. Shanghai Land & Resources, 2012, 33(3): 71- 75.
Gao Y H, Huang S H, Liu D, et al. Microtremor detection technology and its new progress in engineering application. Science Technology and Engineering, 2018, 18(23): 146- 155.
Gao Z Y. 2020. Application of seismic exploration in geothermal survey of Xiong'an[Master's thesis](in Chinese). Beijing: China University of Geosciences (Beijing).
Ge Z G, Chen Y S, Yu Q S, et al. The application of comprehensive geophysical exploration technique to exploration of geothermal resources in Suizhong district of western Liaoning province. Chinese Journal of Engineering Geophysics, 2017, 14(4): 481- 486.
Geng Q L. Gravity instrument foreign representative products and domestic research and development of the latest progress. Equipment for Geotechnical Engineering, 2016, 17(1): 27- 30.
Geng S Y. Application of micromotion exploration technology in urban geology and geothermal exploration. Site Investigation Science and Technology, 2022,(5): 47- 51.
Guo W B, Wang K, Wang S X, et al. Applicationresult of GDP-32Ⅱ multifunctional electric device on mineral resources searching and engineering reconnaissance. Mineral Resources and Geology, 2004, 18(6): 587- 590.
He J F. Application of CSAMT for geothermal exploration in Huizhou. Geotechnical Investigation & Surveying, 2014, 42(8): 93- 98.
He J S. New research progress in theory and application of wide field electromagnetic method. Geophysical and Geochemical Exploration, 2020, 44(5): 985- 990.
He L F, Chen L, Dorji, et al. Mapping the geothermal system using AMT and MT in the Mapamyum (QP) Field, Lake Manasarovar, Southwestern Tibet. Energies, 2016, 9(10): 855
He P. Application of EH4 geomagnetic bathymetry in geothermal exploration of lake and hill in Qingyuan District, Jian. Western Resources, 2023,(1): 144- 146.
Hu N, Zhang L H, Gao H F, et al. The application of integrated geophysical exploration to geothermal exploration in Jiaxing city. Geophysical and Geochemical Exploration, 2011, 35(3): 319- 324.
Huang G S, Hu X Y, Cai J C, et al. Subsurface temperature prediction by means of the coefficient correction method of the optimal temperature: a case study in the Xiong'an New Area, China. Geophysics, 2022, 87(4): B269- B285.
Krawczyk C M, Stiller M, Bauer K, et al. 3-D seismic exploration across the deep geothermal research platform Groẞ Schönebeck north of Berlin/Germany. Geothermal Energy, 2019, 7(1): 15
LaCoste L J B Jr. A new type long period vertical seismograph. Physics, 1934, 5(7): 178- 180.
Lei X D, Yang Q H, Li C, et al. Integrated geophysical exploration in northeast Fengheying geothermal field, Beijing. Geophysical and Geochemical Exploration, 2017, 41(2): 249- 255.
Li C, Zhang P, Dai L, et al. Research on the application of comprehensive geophysical prospecting in middle-deep geothermal exploration. Progress in Geophysics, 2021, 36(2): 611- 617.
Li J M, Hu G Q, Yao Z G, et al. Reforming design of Micro-gal-gravimeter of type DZW-Ⅱ. Journal of Geodesy and Geodynamics, 2005, 25(4): 127- 132.
Liao W Y, Peng R H, Hu X Y, et al. 3-D joint inversion of MT and CSEM Data for imaging a high-temperature geothermal system in Yanggao Region, Shanxi province, China. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5925813
Liu H W, Xie X B, Xu L S, et al. Application of time-domain electromagnetic method with high power electric source in medium-deep geothermal exploration. Resources Environment & Engineering, 2022, 36(6): 808- 816.
Liu H Y, Xu K, Guo J A, et al. Application of integrated geophysical method to geothermal exploration in Tuohu area of Anhui province. Chinese Journal of Engineering Geophysics, 2018, 15(5): 648- 654.
Liu J X, Guo Z W, Guo R W, et al. Application of controlled source audiomagnetotelluric and gravity methods to surveys in the Lionlake hot spring geothermal area. Progress in Geophysics, 2009, 24(5): 1868- 1873.
Liu T Y, Sheng Q H, Yang Y S, et al. Application of frequency spectrum analysis of complex wavelet to seismic data processing. Oil Geophysical Prospecting, 2007, 42(S1): 72- 75.
Liu Z H, Li S F, Yang T B, et al. The application of integral geophysical survey technology in geothermal exploration of Handan Area. Chinese Journal of Engineering Geophysics, 2013, 10(1): 111- 116.
Long H, Li S T, Mu J Q, et al. Parameters optimization of seismic data acquisition for deep buried karst geothermal reservoir in sedimentary basin: a case study of the Niutuo geothermal field in Xiongan New Area. Hydrogeology and Engineering Geology, 2023, 50(4): 14- 25.
Lu C, Wang S J, Zhang Y, et al. A new low-cost no-cable digital geophone for microtremor survey. Chin. J Geophys., 2015, 58(6): 2148- 2159.
Q T, Zhang X P, Tang J T, et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China. Chin. J. Geophys., 2019, 62(10): 3629- 3664.
Okada H, Suto K. 2003. The Microtremor Survey Method. Tulsa: Society of Exploration Geophysicists.
Okada H. Theory of efficient array observations of microtremors with special reference to the SPAC method. Exploration Geophysics, 2006, 37(1): 73- 85.
Pei F G, Zhang X B, Wang X B, et al. Application in geothermal survey of low temperature system by integrated geophysical exploration in the Qiqihar area: take the well HLD1 as an example. Progress in Geophysics, 2021, 36(4): 1432- 1442.
Peng C, Pan B Z, Xue L F, et al. Geophysical survey of geothermal energy potential in the Liaoji Belt, northeastern China. Geothermal Energy, 2019, 7(1): 14
Ran W Y, Wang Z D. The long-wave microtremors method and its advances. Geophysical and Geochemical Exploration, 1994, 18(1): 28- 34.
Ren X Q, Yu H, Luo N N, et al. Application of CSAMT in geothermal exploration in Hui'an, Fujian province. Geoscience, 2022, 36(2): 515- 523.
Shang L L, Wang L L, Ji L, et al. The application of the shallow seismic reflection method to the geothermal resources exploration in Tongguan county of Shaanxi. Computing Techniques for Geophysical and Geochemical Exploration, 2023, 45(1): 61- 67.
Shao B S, Ruan C X, Zhao S M, et al. The application of wide field electromagnetic method to deep geothermal resources exploration in Zhengzhou area. Geology and Exploration, 2023, 59(2): 316- 327.
Shen Y, Xia Y Y, Fu J Q. 2011. Application of seismic exploration in geothermal survey. Public Communication of Science & Technology (in Chinese), (22): 86, 81.
Song H W, Xia F, Zhang Y L, et al. Application of EH4 electrical conductivity imaging system on the geothermal exploration in Baotou. South-to-North Water Transfers and Water Science & Technology, 2012, 10(5): 128- 130.
Song J C, Niu Z L. Application of comprehensive geophysical prospecting in geothermal resource exploration. Modern Mining, 2016, 32(4): 169- 170.
Song T, Diao Q. Application of time-frequency electromagnetic method in geothermal resource exploration. Inner Mongolia coal Economy, 2022, 16: 190- 192.
Spichak V, Manzella A. Electromagnetic sounding of geothermal zones. Journal of Applied Geophysics, 2009, 68(4): 459- 478.
Sun D S, Lei W, Li H T, et al. Application of high resolution seismic exploration method to the prospecting of geothermal resources. Site Investigation Science and Technology, 2002,(6): 55- 59.
Sun H C, Liu Y L, Shao C L. The application of integrated geophysical exploration to geothermal exploration in Haishiwan area. Geophysical and Geochemical Exploration, 2019, 43(2): 290- 297.
Tang S H, Liu H F, Yan S T, et al. A high-sensitivity MEMS gravimeter with a large dynamic range. Microsystems & Nanoengineering, 2019, 5: 45
Tian B Q, Ding Z F, Yang L M, et al. Microtremor survey method: a new approach for geothermal exploration. Frontiers in Earth Science, 2022, 10: 817411
Tian H J, Zhang G D, Liu G D, et al. The application effect of the wide field electromagnetic method in geothermal exploration of Tailong area, northern Guizhou province. Geophysical and Geochemical Exploration, 2020, 44(5): 1093- 1097.
Wan G N, Bai C, Hao L B, et al. Application of microtremor survey method on deep geothermal resources exploration. Coal Geology of China, 2023, 35(6): 76- 83.
Wang B C. The development of seismic instruments in China. Equipment for Geotechnical Engineering, 2000,(3): 3- 10.
Wang B C. Application of comprehensive geophysical method in geothermal exploration. Coal Geology of China, 2022, 34(S1): 169- 172.
Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geoscientica Sinica, 2017, 38(4): 448- 459.
Wang J C, Zhao Z G, Gao S Y, et al. Application of a comprehensive geophysical exploration methods in the exploration of geothermal resources in Yueliangwan, Binhai County. Geophysical and Geochemical Exploration, 2023, 47(2): 321- 330.
Wang J J, Li Y J. Summarizing the hardware and software configurations of the ES109's data acquiring car. Petroleum Instruments, 2013, 27(5): 47- 49. 47-49, 51
Wang R Z, Wang J K, Li H D, et al. A study on the acquisition technology for weak seismic signals from deep geothermal reservoirs. Energies, 2023, 16(6): 2751
Wang Y, Yang D Y, Shi K F. The basic principle of CSAMT method and its application in the engineering field. Journal of China Coal Society, 2002, 27(4): 383- 387.
Wang Z D. The Micromotional spatial autocorrelation method and its practical technique. Geophysical & Geochemical Exploration, 1986, 10(2): 123- 133.
Wei Z F, Chen H Y, Wu X Q. The application of wide field electromagnetic method to geothermal exploration in Yichun. Geophysical and Geochemical Exploration, 2020, 44(5): 1009- 1018.
Wu G J, Hu X Y, Huo G P, et al. Geophysical exploration for geothermal resources: an application of MT and CSAMT in Jiangxia, Wuhan, China. Journal of Earth Science, 2012, 23(5): 757- 767.
Xu B W, Liu Z L, Ye G F, et al. Evaluation and analysis of geothermal resources in Ninghe uplift——evidence from magnetotelluric method. Progress in Geophysics, 2018, 33(6): 2278- 2284.
Xu P F, Ling S Q, Li C J, et al. Mapping deeply-buried geothermal faults using microtremor array analysis. Geophysical Journal International, 2012, 188(1): 115- 122.
Xue G Q, Chen W Y, Zhao P, et al. Three-dimensional electrical structure model of the Yangbajain geothermal field in Tibet: evidence obtained from magnetotelluric data. Science China Earth Sciences, 2023, 66(8): 1839- 1852.
Yamashita M, Fox L. Introduction of V8 wireless multifunction, multichannel geophysical data acquisition system. Proceedings of the SEGJ Conference, 2005, 112: 219- 222.
Yan X L, Kang H M, Wang G J, et al. Application of AMT in deep geothermal structure exploration in Aoshanwei granite area of Qingdao. Progress in Geophysics, 2019, 34(5): 1945- 1953.
Yang D B. Application of EH- 4 in geothermal resource exploration. Scientific Chinese, 2016,(32): 68
Yang M, Yu P, Zhu G Y, et al. Gravity-magnetic-magnetotelluric joint inversion method coupled with seismic constraint information and its application: case study of the analysis of deep geological structure in Tarim Basin. Natural Gas Geoscience, 2022, 33(1): 168- 179.
Yao Z G. Design of the elastic system for the gravimeter of model DZW. Journal of Geodesy and Geodynamics, 1996,(2): 98- 101.
Ye T L. The exploration technique for microtremor array and its application. Earthquake Research in China, 2004, 20(1): 47- 52.
Ying H C, Li H Q, Zhang Y M, et al. Application of SPAC method to survey deep geothermal water storage structures in SK-2. Acta Geoscientica Sinica, 2022, 43(6): 909- 916.
Yu N, Pang F. Application of audio magnetotelluric sounding in the geothermal exploration. Hydrogeology and Engineering Geology, 2010, 37(3): 135- 138.
Zeng H S, Xu Y Z, Liu L, et al. Researches on the application of wide field electromagnetic method to the complex electromagnetic interference environment: exemplified by the geothermal exploration around a city. Geophysical and Geochemical Exploration, 2020, 44(5): 1031- 1038.
Zeng Z F, Chen X, Li J, et al. Advancement of geothermal geophysics exploration. Progress in Geophysics, 2012, 27(1): 168- 178.
Zhang F M. 2016. Application of V8 in geothermal exploration in Guizhou. Inner Mongolia Coal Economy (in Chinese), (16): 157, 160.
Zhang K, Lin N T, Wan X L, et al. An approach for predicting geothermal reservoirs distribution using wavelet transform and self-organizing neural network: a case study of radon and CSAMT data from Northern Jinan, China. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(5): 156
Zhang W, Gan F P, Liang D H, et al. Application of microtremor exploration in quick inspection of overburden layer thickness in karst collapse area. Yangtze River, 2016, 47(24): 51- 54.
Zhang Z H, Wang J C, Dai K M. The application of CSAMT method to geothermal exploration in coastal tideland reclamation areas. Geophysical and Geochemical Exploration, 2014, 38(4): 680- 683.
Zhao J, Zeng Z, Zhou S, et al. 2023. 3-D Inversion of Gravity Data of the Central and Eastern Gonghe Basin for Geothermal Exploration. Energies, 16, 2277, https://doi.org/10.3390/en16052277.
Zhao J L, Chen T Z, Zhang J, et al. The application of the MT method to the investigation of geothermal resources in Kaifeng depression. Geophysical and Geochemical Exploration, 2010, 34(2): 163- 166.
Zhao Y, Lei X D, Zhao X C, et al. Application of 2D seismic exploration in geothermal resource exploration in Beijing municipal administrative center. Urban Geology, 2020, 15(3): 336- 341.
Zhou L G, Zhang W P. Geo-noise exploration and microseisms detecting of Yangbajing geothermal field, Tibet. Acta Geophysica Sinica, 1996, 39(S1): 249- 263.
Zhou W L, Hu X Y, Guo H D, et al. Three-dimensional magnetotelluric inversion reveals the typical geothermal structure of Yanggao geothermal field in Datong Basin, northern China. Geothermics, 2022, 105: 102505
Zhu D Y. China's first high-precision gravimeter-DZW type microgravimeter passed the qualification. Journal of Geodesy and geodynamics, 1986, 6(3): 242
Zhu Y Q, Li D Q, Hu Y F, et al. Deep structure of the Rongcheng geothermal field, Xiongan New Area: constraints from resistivity data and boreholes. Geothermics, 2023, 114: 102776
Zhuang Q X. A brief discussion on the work plan of geothermal deep hole drilling and comprehensive geothermal geological exploration in Zhangzhou City. Energy and Environment, 2017,(2): 6
, , 玉彬, 等. 我国中深层地热资源赋存特征、发展现状及展望. 工程科学学报, 2022, 44(10): 1623- 1631.
彦荣, , 红庆, 等. 用广域电磁法勘查深层地热资源. 物探与化探, 2017, 41(4): 678- 683.
昌昕, 加永, 文月, 等. 地热地球物理勘探现状与展望. 地球物理学进展, 2020, 35(4): 1223- 1231.
进宝, 金宝, , 等. 物探方法在江苏赤山湖地热井勘探中的应用. 物探与化探, 2014, 38(6): 1172- 1175. 1172-1175, 1185
卫营, 国强, , 等. 西藏羊八井地热田SOTEM探测及热储结构分析. 地球物理学报, 2023, 66(11): 4805- 4816.
, 德春, 振华. 地震勘探技术在地热勘探中的应用. 工程勘察, 2008,(12): 57- 59.
正璞, , , 等. 天津东丽湖深部岩溶热储时频电磁法探测及有利区预测. 华北地质, 2023, 46(2): 1- 8.
青云, 广有, 一鸣. 地面电磁探测系统(SEP)研究. 地球物理学报, 2013, 56(11): 3629- 3639.
青云, , 长民, 等. 地面电磁探测(SEP)系统对比试验——内蒙古曹四夭钼矿. 地球物理学报, 2015, 58(8): 2654- 2663.
耀, 光辉, 鹏举, 等. 微动勘查技术在地热勘探中的应用. 物探与化探, 2020, 44(6): 1345- 1351.
, 佩芬, 苏群, 等. 微动勘探方法在地热勘查中的应用. 上海国土资源, 2012, 33(3): 71- 75.
艳华, 溯航, , 等. 微动探测技术及其工程应用进展. 科学技术与工程, 2018, 18(23): 146- 155.
高卓亚. 2020. 地震勘探在雄安新区地热调查中的应用研究[硕士论文]. 北京: 中国地质大学(北京).
志广, 永生, 秋生, 等. 综合地球物理勘探在辽西绥中地区地热资源勘查中的应用. 工程地球物理学报, 2017, 14(4): 481- 486.
启立. 重力仪器国外代表产品及国内研发最新进展. 地质装备, 2016, 17(1): 27- 30.
淑莹. 微动勘探技术在城市地质及地热勘察中的应用. 勘察科学技术, 2022,(5): 47- 51.
文波, , 善勋, 等. GDP-32Ⅱ多功能电法仪在资源和工程勘察中的应用效果. 矿产与地质, 2004, 18(6): 587- 590.
继善. 广域电磁法理论及应用研究的新进展. 物探与化探, 2020, 44(5): 985- 990.
俊飞. CSAMT法在惠州城区地热探测中的应用. 工程勘察, 2014, 42(8): 93- 98.
. EH4大地电磁测深在吉安青原区湖丘地热勘查中的应用. 西部资源, 2023,(1): 144- 146.
, 良红, 海发. 综合物探方法在嘉兴地热勘查中的应用. 物探与化探, 2011, 35(3): 319- 324.
晓东, 全合, , 等. 北京凤河营地热田东北部综合地球物理勘探. 物探与化探, 2017, 41(2): 249- 255.
, , , 等. 综合物探在中深层地热勘查的应用研究. 地球物理学进展, 2021, 36(2): 611- 617.
家明, 国庆, 植桂, 等. DZW-Ⅱ型微伽重力仪的改进设计. 大地测量与地球动力学, 2005, 25(4): 127- 132.
红卫, 兴兵, 连三, 等. 大功率电性源时间域电磁法在中深层地热勘探中的应用. 资源环境与工程, 2022, 36(6): 808- 816.
会毅, , 吉安, 等. 综合物探方法在安徽沱湖地区地热勘查中的应用. 工程地球物理学报, 2018, 15(5): 648- 654.
建新, 振威, 荣文, 等. CSAMT和重力方法在狮子湖温泉深部地球物理勘查中的应用. 地球物理学进展, 2009, 24(5): 1868- 1873.
天佑, 秋红, 宇山, 等. 复小波频谱分析在地震数据处理中的应用. 石油地球物理勘探, 2007, 42(S1): 72- 75.
振华, 世峰, 特波, 等. 综合物探技术在邯郸地热田勘查中的应用. 工程地球物理学报, 2013, 10(1): 111- 116.
, 胜涛, 建强, 等. 沉积盆地深埋型岩溶热储地震探测数据采集参数优选——以雄安新区牛驼镇地热田为例. 水文地质工程地质, 2023, 50(4): 14- 25.
, 肃静, , 等. 用于微动探测的低成本自存储式数字地震检波器. 地球物理学报, 2015, 58(6): 2148- 2159.
庆田, 晓培, 井田, 等. 金属矿地球物理勘探技术与设备: 回顾与进展. 地球物理学报, 2019, 62(10): 3629- 3664.
发根, 小博, 绪本, 等. 综合地球物理勘探在齐齐哈尔地区低温地热系统调查中的应用——以HLD1井为例. 地球物理学进展, 2021, 36(4): 1432- 1442.
伟彦, 振东. 长波微动法及其新进展. 物探与化探, 1994, 18(1): 28- 34.
小庆, 鸿, 娜宁, 等. CSAMT法在福建省惠安地热勘查中的应用. 现代地质, 2022, 36(2): 515- 523.
磊磊, 龙龙, , 等. 地震反射波法在潼关县地热资源勘查中的应用. 物探化探计算技术, 2023, 45(1): 61- 67.
炳松, 传侠, 苏民, 等. 广域电磁法在郑州地区深部地热资源勘查中的应用. 地质与勘探, 2023, 59(2): 316- 327.
沈阳, 夏媛媛, 付俊清, 等. 2011. 地震勘探在地热普查中的应用. 科技传播, (22): 86, 81.
洪伟, , 翼龙, 等. EH4电导率成像系统在包头地热勘查中的应用. 南水北调与水利科技, 2012, 10(5): 128- 130.
敬驰, 作亮. 综合物探法在地热资源勘探中的应用. 现代矿业, 2016, 32(4): 169- 170.
, . 时频电磁法在地热资源勘查中的应用. 内蒙古煤炭经济, 2022,(16): 190- 192.
党生, , 洪涛, 等. 高分辨率地震勘探在地热资源勘查中的应用. 勘察科学技术, 2002,(6): 55- 59.
海川, 永亮, 程龙. 综合物探在海石湾地区地热勘查中的应用. 物探与化探, 2019, 43(2): 290- 297.
红军, 光大, 光迪, 等. 黔北台隆区地热勘探中广域电磁法的应用效果. 物探与化探, 2020, 44(5): 1093- 1097.
光南, , 立彬, 等. 微动法在深部地热资源勘查中的应用. 中国煤炭地质, 2023, 35(6): 76- 83.
百成. 我国地震勘探仪器的发展. 地质装备, 2000,(3): 3- 10.
宝琛. 综合物探方法在地热勘查中的应用. 中国煤炭地质, 2022, 34(S1): 169- 172.
贵玲, , 继运, 等. 中国地热资源潜力评价. 地球学报, 2017, 38(4): 448- 459.
进军, 艳军. ES109地震数据采集仪器车硬件及软件配置. 石油仪器, 2013, 27(5): 47- 49. 47-49, 51
军成, 振国, 士银, 等. 综合物探方法在滨海县月亮湾地热资源勘查中的应用. 物探与化探, 2023, 47(2): 321- 330.
, 德义, 昆法. CSAMT法基本理论及在工程中的应用. 煤炭学报, 2002, 27(4): 383- 387.
振东. 微动的空间自相关法及其实用技术. 物探与化探, 1986, 10(2): 123- 133.
志峰, 后扬, 西全. 广域电磁法在宜春某地地热勘查中的应用. 物探与化探, 2020, 44(5): 1009- 1018.
博文, 志龙, 高峰, 等. 宁河凸起地热资源远景区评价分析——来自大地电磁测深法的证据. 地球物理学进展, 2018, 33(6): 2278- 2284.
国强, 卫营, , 等. 西藏羊八井地热田三维电性结构模型——来自大地电磁的证据. 中国科学: 地球科学, 2023, 53(6): 1859- 1871.
小丽, 慧敏, 光杰, 等. AMT方法在鳌山卫花岗岩地区深部地热构造勘探中的应用. 地球物理学进展, 2019, 34(5): 1945- 1953.
殿宝. EH- 4在地热资源勘查中的应用. 科学中国人, 2016,(32): 68
, , 光有, 等. 耦合地震约束信息的重磁电联合反演方法及其应用——以塔里木盆地深层地质结构解析为例. 天然气地球科学, 2022, 33(1): 168- 179.
植桂. DZW型微伽重力仪弹性系统的设计. 地壳形变与地震, 1996,(2): 98- 101.
太兰. 微动台阵探测技术及其应用研究. 中国地震, 2004, 20(1): 47- 52.
恒成, 洪强, 玉敏, 等. 基于SPAC法探测松科二井深层地热储水构造. 地球学报, 2022, 43(6): 909- 916.
, . 音频大地电磁测深法在地热勘查中的应用研究. 水文地质工程地质, 2010, 37(3): 135- 138.
何胜, 元璋, , 等. 广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例. 物探与化探, 2020, 44(5): 1031- 1038.
昭发, , , 等. 地热地球物理勘探新进展. 地球物理学进展, 2012, 27(1): 168- 178.
张发明. 2016. V8在贵州地热勘查中的应用. 内蒙古煤炭经济, (16): 157, 160.
, 伏平, 东辉, 等. 利用微动法快速探测岩溶塌陷区覆盖层厚度. 人民长江, 2016, 47(24): 51- 54.
作宏, 军成, 康明. CSAMT在沿海围垦区地热勘查中的应用. 物探与化探, 2014, 38(4): 680- 683.
建粮, 天振, , 等. MT法在开封凹陷地热资源调查中的应用. 物探与化探, 2010, 34(2): 163- 166.
, 晓东, 旭辰, 等. 二维地震勘探在北京城市副中心地热资源勘查中的应用. 城市地质, 2020, 15(3): 336- 341.
立功, 维平. 西藏羊八井高温地热田地噪声与微地震勘查研究. 地球物理学报, 1996, 39(S1): 249- 263.
代远. 我国第一台高精度重力仪——DZW型微伽重力仪通过鉴定. 地壳形变与地震, 1986, 6(3): 242
庆祥. 浅谈漳州市干热岩地热深孔钻探和综合地热地质勘查工作方案. 能源与环境, 2017,(2): 6

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(3528 KB)

Accesses

Citation

Detail

Sections
Recommended

/