Optimization scheme of ionospheric data assimilation system based on ionospheric correlation

XiBing LI, BoXin CAO, Jing FENG, Xue LI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 409-416.

PDF(2736 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2736 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 409-416. DOI: 10.6038/pg2025HH0542

Optimization scheme of ionospheric data assimilation system based on ionospheric correlation

Author information +
History +

Abstract

Ionospheric correlation plays a key role in ionospheric data assimilation, which describes the statistical relationship between different ionospheric parameters or locations, capturing the dependencies and similarities between different regions of the ionosphere. Ionospheric correlation time is an important representation of ionospheric correlation. The ionospheric correlation time is an important parameter, which contains the temporal variability, structure and dynamics information of the ionosphere. This parameter can be directly used to improve the ionospheric data assimilation model. Therefore, this paper proposes an optimization scheme for the ionospheric assimilation system based on ionospheric correlation time. For the same ionospheric assimilation system, different values of correlation time will have a significant impact on the assimilation results. This paper compares the assimilation results when the ionospheric correlation time is 1.5 hours and 2.5 hours. The results show that in mid-to-high latitudes It is more reasonable to use a larger ionospheric correlation time; while it is more reasonable to sample a smaller ionospheric correlation time in mid-and low-latitude areas. Therefore, this paper recommends classifying and calculating the correlation times in different regions to make the ionospheric assimilation results closer to the real values. In-depth research on ionospheric correlation time will help improve the accuracy of ionospheric assimilation systems and help researchers gain a more comprehensive understanding of ionospheric correlation.

Key words

Ionosphere / Data assimilation / Correlation time / Ionospheric correlation / Variability

Cite this article

Download Citations
XiBing LI , BoXin CAO , Jing FENG , et al. Optimization scheme of ionospheric data assimilation system based on ionospheric correlation[J]. Progress in Geophysics. 2025, 40(2): 409-416 https://doi.org/10.6038/pg2025HH0542

References

Aa E , Ridley A , Huang W G , et al. An ionosphere specification technique based on data ingestion algorithm and empirical orthogonal function analysis method. Space Weather, 2018, 16 (9): 1410- 1423.
Anderson J , Hoar T , Raeder K , et al. The data assimilation research testbed: a community facility. Bulletin of the American Meteorological Society, 2009, 90 (9): 1283- 1296.
Bust G S , Crowley G , Garner T W , et al. Four-dimensional GPS imaging of space weather storms. Space Weather, 2007, 5 (2): S02003
Bust G S , Mitchell C N . History, current state, and future directions of ionospheric imaging. Reviews of Geophysics, 2008, 46 (1): RG1003
Evensen G . Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 1994, 99 (C5): 10143- 10162.
Forsythe V V , Azeem I , Crowley G , et al. The global analysis of the ionospheric correlation time and its implications for ionospheric data assimilation. Radio Science, 2020, 55 (12): e2020RS007181
Hajj G A , Wilson B D , Wang C , et al. Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter. Radio Science, 2004, 39 (1): RS1S05
Jee G , Burns A G , Wang W , et al. Duration of an ionospheric data assimilation initialization of a coupled thermosphere-ionosphere model. Space Weather, 2007, 5 (1): S01004
Kalman R E . A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82 (1): 35- 45.
Li Z , Yang B Y , Huang J P , et al. Overview of space-based electric field data processing methods. Progress in Geophysics, 2023, 38 (2): 562- 577.
Matsuo T , Araujo-Pradere E A . Role of thermosphere-ionosphere coupling in a global ionospheric specification. Radio Science, 2011, 46 (6): RS0D23
Mengist C K , Ssessanga N , Jeong S H , et al. Assimilation of multiple data types to a regional ionosphere model with a 3D-var algorithm (IDA4D). Space Weather, 2019, 17 (7): 1018- 1039.
Ou M , Chen L J , Wang Y , et al. Impact analysis of ground-based GNSS and space-based occultation observations on global ionospheric data assimilation. Chinese Journal of Radio Science, 2022, 37 (4): 619- 628.
Pi X Q , Wang C M , Hajj G A , et al. Estimation of E×B drift using a global assimilative ionospheric model: an observation system simulation experiment. Journal of Geophysical Research: Space Physics, 2003, 108 (A2): 1075
Richmond A D , Ridley E C , Roble R G . A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 1992, 19 (6): 601- 604.
Scherliess L , Schunk R W , Sojka J J , et al. Utah State University global assimilation of ionospheric measurements Gauss-Markov Kalman filter model of the ionosphere: model description and validation. Journal of Geophysical Research: Space Physics, 2006, 111 (A11): A11315
Schunk R W , Scherliess L , Sojka J J , et al. Global assimilation of ionospheric measurements (GAIM). Radio Science, 2004, 39 (1): RS1S02
Spencer P S J, Robertson D S, Mader G L. 2004. Ionospheric data assimilation methods for geodetic applications. //PLANS 2004. Position location and navigation symposium (IEEE Cat. No. 04ch37556). Monterey: IEEE, 510-517, doi: 10.1109/PLANS.2004.1309036.
Wang S C , Huang S X , Fang H X . Estimating of the global ionosphere maps using hybrid data assimilation method and their background influence analysis. Journal of Geophysical Research: Space Physics, 2020, 125 (8): e2020JA028047
Xie B P. 2017. Application of hybrid variational-ensemble assimilation method in FY-3A satellite microwave data [Master's thesis](in Chinese). Changsha: National University of Defense Technology, doi: 10.27052/d.cnki.gzjgu.2017.000854.
Xie Y X. 2017. Researches on near space atmosphere variational data assimilation technology based on satellite data [Ph. D. thesis](in Chinese). Beijing: National Space Science Center, Chinese Academy of Sciences.
Yue X A , Schreiner W S , Kuo Y H , et al. Global 3-D ionospheric electron density reanalysis based on multisource data assimilation. Journal of Geophysical Research: Space Physics, 2012, 117 (A9): A09325
Zhang H K , Shen F . Application of data assimilation in space weather. Chinese Journal of Space Science, 2022, 42 (3): 422- 436.
Zhao C , Jiang C H , Liu J , et al. Comparative study of altimeter-based TEC and GNSS-TEC. Progress in Geophysics, 2022, 37 (4): 1528- 1534.
, 百一 , 建平 , 等. 空基电场数据处理方法综述. 地球物理学进展, 2023, 38 (2): 562- 577.
, 龙江 , , 等. 地基GNSS和天基掩星观测对全球电离层数据同化效果的影响分析. 电波科学学报, 2022, 37 (4): 619- 628.
谢宾鹏. 2017. 集合变分混合同化方法在FY-3A卫星微波资料同化中的应用[硕士论文]. 长沙: 国防科技大学, doi: 10.27052/d.cnki.gzjgu.2017.000854.
谢衍新. 2017. 基于卫星观测的临近空间大气变分数据同化研究[博士论文]. 北京: 中国科学院大学(中国科学院国家空间科学中心).
晗可 , . 数据同化在空间天气学中的应用. 空间科学学报, 2022, 42 (3): 422- 436.
, 春华 , , 等. 基于测高仪的TEC与GNSS-TEC的比较研究. 地球物理学进展, 2022, 37 (4): 1528- 1534.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(2736 KB)

Accesses

Citation

Detail

Sections
Recommended

/