Overview of progress in research on artificial intelligence for earthquake classification

TianRan LU, MengQiao DUAN, ZiYi LI, LianQing ZHOU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 25-47.

PDF(3753 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(3753 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 25-47. DOI: 10.6038/pg2025HH0559

Overview of progress in research on artificial intelligence for earthquake classification

Author information +
History +

Abstract

The correct classification of earthquake events is of great significance to regional seismic hazard assessment and the reduction of natural or artificial earthquake disasters. Over the years, many scientific and technological personnel have conducted a large amount of research on this topic. This article systematically summarizes the current mainstream understanding of the classification characteristics and difficulties of various types of natural and artificial earthquake events in China and abroad, as well as the application status of artificial intelligence in earthquake classification research. The results show that: (1) the classification of blasting earthquakes and tectonic earthquakes has made relatively rapid progress; (2) the identification and classification of volcanic earthquakes and landslide events generally face the problems of insufficient sample size and data imbalance in the dataset; (3) the recognition of induced earthquakes remains a difficult and controversial subject in classification research; (4) artificial intelligence methods, with their high accuracy, efficiency, and potential for future automation, have become the mainstream method for earthquake classification at present. Based on the current application status of artificial intelligence technology in earthquake classification, this paper discusses and proposes corresponding suggestions and development trends.

Key words

Natural earthquakes / Blasting / Induced earthquakes / Volcanic earthquakes / Earthquake classification / Artificial intelligence

Cite this article

Download Citations
TianRan LU , MengQiao DUAN , ZiYi LI , et al. Overview of progress in research on artificial intelligence for earthquake classification[J]. Progress in Geophysics. 2025, 40(1): 25-47 https://doi.org/10.6038/pg2025HH0559

References

Akkar S, Sandıkkaya M A, Ay B Ö. Compatible ground-motion prediction equations for damping scaling factors and vertical-to-horizontal spectral amplitude ratios for the broader Europe region. Bulletin of Earthquake Engineering, 2014, 12(S1): 517- 547.
Allen C R. Reservoir-induced earthquakes and engineering policy. California Geology, 1982, 35(11): 115- 118.
Allmann B P, Shearer P M. Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth, 2009, 114(B1): B01310
An Y R. Introduction to a recently released dataset entitled CSNCD: a comprehensive dataset of Chinese seismic network. Earthquake Research Advances, 2024, 4(1): 100255
Ando R K, Zhang T. 2006. Learning on graph with Laplacian regularization. //Proceedings of the 19th International Conference on Neural Information Processing Systems. Vancouver: ACM, 25-32.
Atkinson G M, Eaton D W, Igonin N. Developments in understanding seismicity triggered by hydraulic fracturing. Nature Reviews Earth & Environment, 2020, 1(5): 264- 277.
Balakrishnama S, Ganapathiraju A. Linear discriminant analysis-a brief tutorial. Institute for Signal and Information Processing, 1998, 18: 1- 8.
Bao X W, Eaton D W. Fault activation by hydraulic fracturing in western Canada. Science, 2016, 354(6318): 1406- 1409.
Basheer I A, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 2000, 43(1): 3- 31.
Bengio Y, Delalleau O, Le Roux N. 2006. Label propagation and quadratic criterion. //Chapelle O, Schölkopf B, Zien A eds. Semi-Supervised Learning. Cambridge: The MIT Press.
Beyreuther M, Wassermann J. Continuous earthquake detection and classification using discrete hidden Markov models. Geophysical Journal International, 2008, 175(3): 1055- 1066.
Beyreuther M, Carniel R, Wassermann J. Continuous hidden Markov models: application to automatic earthquake detection and classification at Las Canãdas caldera, Tenerife. Journal of Volcanology and Geothermal Research, 2008, 176(4): 513- 518.
Beyreuther M, Hammer C, Wassermann J, et al. Constructing a hidden Markov model based earthquake detector: application to induced seismicity. Geophysical Journal International, 2012, 189(1): 602- 610.
Boucher G, Ryall A, Jones A E. Earthquakes associated with underground nuclear explosions. Journal of Geophysical Research, 1969, 74(15): 3808- 3820.
Breiman L. Random forests. Machine Learning, 2001, 45(1): 5- 32.
Brémaud P. 1999. Discrete-time Markov models. //Brémaud P ed. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. New York: Springer, 53-93.
Brown A R. Seismic attributes and their classification. The leading edge, 1996, 15(10): 1090- 1090.
Budako ǧlu E, Horasan G. Classification of seismic events using linear discriminant function (LDF) in the Sakarya region, Turkey. Acta Geophysica, 2018, 66(5): 895- 906.
Bueno A, Benitez C, De Angelis S, et al. Volcano-seismic transfer learning and uncertainty quantification with Bayesian neural networks. IEEE Transactions on Geoscience and Remote Sensing, 2020a, 58(2): 892- 902.
Bueno A, Zuccarello L, Díaz-Moreno A, et al. PICOSS: python interface for the classification of seismic signals. Computers & Geosciences, 2020b, 142: 104531
Cesca S, Rohr A, Dahm T. Discrimination of induced seismicity by full moment tensor inversion and decomposition. Journal of Seismology, 2013, 17(1): 147- 163.
Chang T G, Hu X. Research progress on reservoir induced earthquake. Journal of Hydraulic Engineering, 2018, 49(9): 1109- 1122.
Chapman C H, Leaney W S. A new moment-tensor decomposition for seismic events in anisotropic media. Geophysical Journal International, 2012, 188(1): 343- 370.
Chen D, Wang E Y, Li N. Study on the rupture properties and automatic identification model of micro-earthquakes and blasting events in a coal mine. Soil Dynamics and Earthquake Engineering, 2021, 146: 106759
Chen S Q, Cao S Y, Sun L, et al. Differences in time-frequency characteristics of wave spectrum between Zipingpu reservoir induced earthquakes and tectonic earthquakes. Earthquake Research in China, 2020, 36(3): 469- 483.
Chen T Q, Guestrin C. 2016. XGBoost: a scalable tree boosting system. //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 785-794, doi: 10.1145/2939672.2939785.
Chen Y, Zhang X K, Qiu X L, et al. A new method for land-based artificially excited seismic waves. Chinese Science Bulletin, 2007, 52(11): 1317- 1321.
Chen Y T, Wu Z L, Lü W W. 2003. Classification of earthquakes. City and Disaster Reduction (in Chinese), (1): 13-15.
Chouet B A. Long-period volcano seismicity: its source and use in eruption forecasting. Nature, 1996, 380(6572): 309- 316.
Clerc F, Harrington R M, Liu Y J, et al. Stress drop estimates and hypocenter relocations of induced seismicity near Crooked Lake, Alberta. Geophysical Research Letters, 2016, 43(13): 6942- 6951.
Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3): 273- 297.
Cramer J S. 2002. The origins of logistic regression. SSRN Electronic Journal, doi: 10.2139/ssrn.360300.
Curilem M, Huenupan F, Beltrán D, et al. Pattern recognition applied to seismic signals of Llaima volcano (Chile): an evaluation of station-dependent classifiers. Journal of Volcanology and Geothermal Research, 2016, 315: 15- 27.
Dahm T, Becker D, Bischoff M, et al. Recommendation for the discrimination of human-related and natural seismicity. Journal of Seismology, 2013, 17: 197- 202.
Dammeier F, Moore J R, Hammer C, et al. Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models. Journal of Geophysical Research: Earth Surface, 2016, 121(2): 351- 371.
Di X L, Wang P, Jin Z D, et al. Preliminary analysis on collapse earthquakes in northern Yulin, Shaanxi province. Journal of Catastrophology, 2009, 24(4): 81- 83.
Diao S Z, Diao T, LI X, et al. Collation and research on historical data of collapse earthquakes in China. Recent Developments in World Seismology, 2019,(6): 3- 13.
Doglioni C. A classification of induced seismicity. Geoscience Frontiers, 2018, 9(6): 1903- 1909.
Dou T T, Cheng H H, Zhou Y Z, et al. The influence of groundwater mining on regional seismicity in the North China Plain. Chinese Journal of Geophysics, 2022, 65(8): 2931- 2944.
Dowla F U, Taylor S R, Anderson R W. Seismic discrimination with artificial neural networks: preliminary results with regional spectral data. Bulletin of the Seismological Society of America, 1990, 80(5): 1346- 1373.
Fehler M. Observations of volcanic tremor at mount St. Helens volcano. Journal of Geophysical Research: Solid Earth, 1983, 88(B4): 3476- 3484.
Fereidoni A, Atkinson G M. Discriminating earthquakes from quarry blasts based on ShakeMap ground-motion parameters. Bulletin of the Seismological Society of America, 2017, 107(4): 1931- 1939.
Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936, 7(2): 179- 188.
Foulger G R, Wilson M P, Gluyas J G, et al. Global review of human-induced earthquakes. Earth-Science Reviews, 2018, 178: 438- 514.
Friedman J H. Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 2001, 29(5): 1189- 1232.
Fuis G S, Clayton R W, Davis P M, et al. Fault systems of the 1971 San Fernando and 1994 Northridge earthquakes, southern California: Relocated aftershocks and seismic images from LARSE II. Geology, 2003, 31(2): 171- 174.
Ge S M, Saar M O. Review: induced seismicity during geoenergy development—a hydromechanical perspective. Journal of Geophysical Research: Solid Earth, 2022, 127(3): e2021JB023141
González P J, Tiampo K F, Palano M, et al. The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading. Nature Geoscience, 2012, 5(11): 821- 825.
Grigoli F, Cesca S, Priolo E, et al. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: a European perspective. Reviews of Geophysics, 2017, 55(2): 310- 340.
Gu J X, Wang Z H, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recognition, 2018, 77: 354- 377.
Guilhem A, Hutchings L, Dreger D S, et al. Moment tensor inversions of M~3 earthquakes in the geysers geothermal fields, California. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 2121- 2137.
Gulia L, Gasperini P. Contamination of frequency-magnitude slope (b-value) by quarry blasts: an example for Italy. Seismological Research Letters, 2021, 92(6): 3538- 3551.
Hammer C, Beyreuther M, Ohrnberger M. A seismic-event spotting system for volcano fast-response systems. Bulletin of the Seismological Society of America, 2012, 102(3): 948- 960.
Hartigan J A, Wong M A. Algorithm AS 136: a K-means clustering algorithm. Applied Statistics, 1979, 28(1): 100
He K M, Zhang X Y, Ren S Q, et al. 2016. Deep residual learning for image recognition. //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 770-778.
Ho T K. 1995. Random decision forests. //Proceedings of 3rd International Conference on Document Analysis and Recognition. Montreal: IEEE, 278-282, doi: 10.1109/ICDAR.1995.598994.
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.
Hosmer Jr D W, Lemeshow S, Sturdivant R X. 2013. Applied Logistic Regression. 3rd ed. Hoboken: John Wiley & Sons.
Hough S E. Shaking intensity from injection-induced versus tectonic earthquakes in the central-eastern United States. The Leading Edge, 2015, 34(6): 690- 697.
Hu Q, Zhou Y, Wang S X, et al. Improving the accuracy of landslide detection in "off-site" area by machine learning model portability comparison: a case study of Jiuzhaigou earthquake, China. Remote Sensing, 2019, 11(21): 2530
Huang Y M, Ma S L, Li X H. Research progress on injection-induced earthquakes. China Earthquake Engineering Journal, 2023, 45(2): 387- 400.
Ida Y, Fujita E, Hirose T. Classification of volcano-seismic events using waveforms in the method of k-means clustering and dynamic time warping. Journal of Volcanology and Geothermal Research, 2022, 429: 107616
Isacks B, Oliver J, Sykes L R. Seismology and the new global tectonics. Journal of Geophysical Research, 1968, 73(18): 5855- 5899.
Jongmans D, Garambois S. Geophysical investigation of landslides: a review. Bulletin de la Société Géologique de France, 2007, 178(2): 101- 112.
Joswig M. Knowledge-based seismogram processing by mental images. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(3): 429- 439.
Juanes R, Jha B, Hager B H, et al. Were the May 2012 Emilia-Romagna earthquakes induced? A coupled flow-geomechanics modeling assessment. Geophysical Research Letters, 2016, 43(13): 6891- 6897.
Kim K H, Ree J H, Kim Y, et al. Assessing whether the 2017 MW5.4 Pohang earthquake in South Korea was an induced event. Science, 2018, 360(6392): 1007- 1009.
Kim S, Lee K, You K. Seismic discrimination between earthquakes and explosions using support vector machine. Sensors, 2020, 20(7): 1879
Kim W Y, Simpson D W, Richards P G. Discrimination of earthquakes and explosions in the eastern United States using regional high-frequency data. Geophysical Research Letters, 1993, 20(14): 1507- 1510.
King G C P, Stein R S, Lin J. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 1994, 84(3): 935- 953.
Köhler A, Ohrnberger M, Scherbaum F. Unsupervised feature selection and general pattern discovery using self-organizing maps for gaining insights into the nature of seismic wavefields. Computers & Geosciences, 2009, 35(9): 1757- 1767.
Kohonen T. The self-organizing map. Proceedings of the IEEE, 1990, 78(9): 1464- 1480.
Kong Q K, Wang R J, Walter W R, et al. Combining deep learning with physics based features in explosion-earthquake discrimination. Geophysical Research Letters, 2022, 49(13): e2022GL098645
Korrat I M, Lethy A, ElGabry M N, et al. Discrimination between small earthquakes and quarry blasts in Egypt using spectral source characteristics. Pure and Applied Geophysics, 2022, 179(2): 599- 618.
Kortström J, Uski M, Tiira T. Automatic classification of seismic events within a regional seismograph network. Computers & Geosciences, 2016, 87: 22- 30.
Krishna K, Narasimha Murty M. Genetic K-means algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999, 29(3): 433- 439.
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84- 90.
Kuyuk H S, Susumu O. Real-time classification of earthquake using deep learning. Procedia Computer Science, 2018, 140: 298- 305.
Landis J R, Koch G G. The measurement of observer agreement for categorical data. Biometrics, 1977, 33(1): 159- 174.
Lauritzen S L, Spiegelhalter D J. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society: Series B (Methodological), 1988, 50(2): 157- 194.
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278- 2324.
Lei X L, Su J R, Wang Z W. Growing seismicity in the Sichuan Basin and its association with industrial activities. Science China Earth Sciences, 2020, 63(11): 1633- 1660.
Li J, Zhou Y J. 2020. Microseismic detection based on transfer learning: Practical methods for deep learning models——Taking the data from Wenchuan earthquake aftershocks and Oklahoma induced earthquake as examples. //Proceedings of the 2020 annual meeting of chinese geoscience union. Chongqing: CGU, 2619.
Li J F, Stankovic L, Pytharouli S, et al. Automated platform for microseismic signal analysis: denoising, detection, and classification in slope stability studies. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7996- 8006.
Li L, Wang W T, Yu Z Y, et al. CREDIT-X1local: a reference dataset for machine learning seismology from Chin Array in southwest China. Earthquake Science, 2024, 37(2): 139- 157.
Li T, Cai M F, Cai M. A discussion on classification of mining-induced seismicity. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3679- 3686.
Li T, Cai M F, Cai M. A review of mining-induced seismicity in China. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(8): 1149- 1171.
Li T Z, Zhao Z, Ma L, et al. Genetic analysis and preventive measure of earthquake induced by coal mining. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2011, 26(3): 16- 20.
Liang H, Sun L, Chen S Q, et al. Research on seismic event classification based on SVM algorithm: an application in northeast China. Journal of Geophysics, 2023, 66(12): 5030- 5040.
Lin H C, Wang B P, Liu H R, et al. Comparative study of tectonic and collapse earthquakes. Acta Seismologica Sinica, 1990, 12(4): 448- 455.
Lin J M, Wang B S, Ge H K, et al. Study on large volume airgun source characteristics and seismic phase analysis. Chinese Journal of Geophysics, 2008, 51(1): 206- 212.
Linville L, Pankow K, Draelos T. Deep learning models augment analyst decisions for event discrimination. Geophysical Research Letters, 2019, 46(7): 3643- 3651.
Liu S, Yang J S, Tian B F, et al. Discrimination between explosions, mine collapses and earthquakes in capital region of China. Acta Seismologica Sinica, 2012, 34(2): 202- 214.
Long A M, Wu J B, Yan C H, et al. Collapse earthquake research and disaster prevention and mitigation measures in Guangxi. South China Journal of Seismology, 2015, 35(4): 1- 9.
Luo G C, Wang B S, Ge H K, et al. Progress in Earth's deep structures exploration by air gun source. Progress in Geophysics, 2006, 21(2): 400- 407.
Lutter W J, Fuis G S, Thurber C H, et al. Tomographic images of the upper crust from the Los Angeles basin to the Mojave desert, California: results from the Los Angeles region seismic experiment. Journal of Geophysical Research: Solid Earth, 1999, 104(B11): 25543- 25565.
Maggi A, Ferrazzini V, Hibert C, et al. Implementation of a multistation approach for automated event classification at piton de la Fournaise volcano. Seismological Research Letters, 2017, 88(3): 878- 891.
Malfante M, Dalla Mura M, Mars J I, et al. Automatic classification of volcano seismic signatures. Journal of Geophysical Research: Solid Earth, 2018, 123(12): 10645- 10658.
Manley G F, Mather T A, Pyle D M, et al. A deep active learning approach to the automatic classification of volcano-seismic events. Frontiers in Earth Science, 2022, 10: 807926
Mariani M C, Gonzalez-Huizar H, Bhuiyan M M A, et al. Using dynamic Fourier analysis to discriminate between seismic signals from natural earthquakes and mining explosions. AIMS Geosciences, 2017, 3(3): 438- 449.
Martínez-Garzón P, Kwiatek G, Bohnhoff M, et al. Volumetric components in the earthquake source related to fluid injection and stress state. Geophysical Research Letters, 2017, 44(2): 800- 809.
McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115- 133.
McGarr A, Simpson D. 1997. Keynote lecture: A broad look at induced and triggered seismicity, "Rockbursts and Seismicity in Mines". //Proceedings of 4th International Symposium on Rockbursts and Seismicity in Mines Poland. Rotterdam: A. A. Balkema Press, 385-396.
McGarr A, Simpson D, Seeber L. Case histories of induced and triggered seismicity. International Geophysics, 2002, 81: 647- 661.
McGarr A. Maximum magnitude earthquakes induced by fluid injection. Journal of Geophysical Research: Solid Earth, 2014, 119(2): 1008- 1019.
Miao Z L. Distribution and occurence of karst collapse induced earthquakes in the Guilin region. Hydrogeology & Engineering Geology, 1998, 25(4): 38- 41.
Ming Y H, Wu J P, Fang L H, et al. Volcanic seismic signals and tremor source models. Progress in Geophysics, 2009, 24(2): 382- 390.
Mousavi S M, Horton S P, Langston C A, et al. Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression. Geophysical Journal International, 2016, 207(1): 29- 46.
Mousavi S M, Beroza G C. Machine learning in earthquake seismology. Annual Review of Earth and Planetary Sciences, 2023, 51: 105- 129.
Ng C W W, Yang B, Liu Z Q, et al. Spatiotemporal modelling of rainfall-induced landslides using machine learning. Landslides, 2021, 18(7): 2499- 2514.
Noble W S. What is a support vector machine?. Nature Biotechnology, 2006, 24(12): 1565- 1567.
Ohrnberger M. 2001. Continuous automatic classification of seismic signals of volcanic origin at Mt. Merapi, Java, Indonesia[Ph. D. thesis]. Germany: University of Potsdam.
Okaya D, Henrys S, Stern T. Double-sided onshore-offshore seismic imaging of a plate boundary: "super-gathers" across South Island, New Zealand. Tectonophysics, 2002, 355(1 -4): 247- 263.
Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345- 1359.
Parotidis M, Rothert E, Shapiro S A. Pore-pressure diffusion: a possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe. Geophysical Research Letters, 2003, 30(20): 2075
Parotidis M, Shapiro S A, Rothert E. Back front of seismicity induced after termination of borehole fluid injection. Geophysical Research Letters, 2004, 31(2): L02612
Pascanu R, Mikolov T, Bengio Y. 2013. On the difficulty of training recurrent neural networks. //Proceedings of the 30th International Conference on International Conference on Machine Learning. Atlanta: ACM, Ⅲ-1310-Ⅲ-1318.
Pasyanos M E, Walter W R. Improvements to regional explosion identification using attenuation models of the lithosphere. Geophysical Research Letters, 2009, 36(14): L14304
Pawley S, Schultz R, Playter T, et al. The geological susceptibility of induced earthquakes in the Duvernay play. Geophysical Research Letters, 2018, 45(4): 1786- 1793.
Petersen M D, Mueller C S, Moschetti M P, et al. 2015. Incorporating induced seismicity in the 2014 United States national seismic hazard model—results of 2014 workshop and sensitivity studies: U.S. Geological Survey Open-File Report 2015-1070, 69p.
Pinto N, Cox D D, DiCarlo J J. Why is real-world visual object recognition hard?. PLoS Computational Biology, 2008, 4(1): e27
Power J A, Lahr J C, Page R A, et al. Seismic evolution of the 1989-1990 eruption sequence of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 1994, 62(1 -4): 69- 94.
Provost F, Hibert C, Malet J P. Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier. Geophysical Research Letters, 2017, 44(1): 113- 120.
Qian Q H, Chen S H. Blasting vibration effect. Blasting, 2004, 21(2): 1- 5.
Qu Z W, Wu C Y, Wang X R. Aspects extraction based on semi-supervised self-training. CAAI Transactions on Intelligent Systems, 2019, 14(4): 635- 641.
Rabin N, Bregman Y, Lindenbaum O, et al. Earthquake-explosion discrimination using diffusion maps. Geophysical Journal International, 2016, 207(3): 1484- 1492.
Rabiner L, Juang B. An introduction to hidden Markov models. IEEE ASSP Magazine, 1986, 3(1): 4- 16.
Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 1989, 77(2): 257- 286.
Reynen A, Audet P. Supervised machine learning on a network scale: application to seismic event classification and detection. Geophysical Journal International, 2017, 210(3): 1394- 1409.
Reynolds D. 2009. Gaussian mixture models. //Li S Z, Jain A eds. Encyclopedia of Biometrics. New York: Springer, 659-663.
Rish I. 2001. An empirical study of the naive Bayes classifier. //IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, 3(22): 41 -46.
Rosenberg C, Hebert M, Schneiderman H. 2005. Semi-supervised self-training of object detection models. //7th IEEE Workshops on Applications of Computer Vision. Breckenridge: IEEE, 29-36.
Saadalla H, Abdel-aal A A K, Mohamed A, et al. Characteristics of earthquakes recorded around the high dam lake with comparison to natural earthquakes using waveform inversion and source spectra. Pure and Applied Geophysics, 2020, 177(8): 3667- 3695.
Schapire R E. 2013. Explaining AdaBoost. //Schölkopf B, Luo Z Y, Vovk V eds. Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik. Berlin, Heidelberg: Springer, 37-52, doi: 10.1007/978-3-642-41136-6_5.
Schoenball M, Davatzes N C, Glen J M G. Differentiating induced and natural seismicity using space-time-magnitude statistics applied to the Coso Geothermal field. Geophysical Research Letters, 2015, 42(15): 6221- 6228.
Settles B. 2009. Active learning literature survey. Madison: University of Wisconsin Madison.
Shang X Y, Li X B, Morales-Esteban A, et al. Improving microseismic event and quarry blast classification using artificial neural networks based on principal component analysis. Soil Dynamics and Earthquake Engineering, 2017, 99: 142- 149.
Shapiro S A, Huenges E, Borm G. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophysical Journal International, 1997, 131(2): F15- F18.
Sick B, Guggenmos M, Joswig M. Chances and limits of single-station seismic event clustering by unsupervised pattern recognition. Geophysical Journal International, 2015, 201(3): 1801- 1813.
Šílený J, Hill D P, Eisner L, et al. Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing. Journal of Geophysical Research: Solid Earth, 2009, 114(B8): B08307
Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. //3rd International Conference on Learning Representations. San Diego: ICLR.
Simpson D W, Leith W S, Scholz C H. Two types of reservoir-induced seismicity. Bulletin of the Seismological Society of America, 1988, 78(6): 2025- 2040.
Гадьперин Е. И. 1989. Seismic Exploration Polarization Method (in Chinese). He Q D, Yang B J Trans. Beijing: Petroleum Industry Press.
Talwani P. Speculation on the causes of continuing seismicity near Koyna reservoir, India. Pure and Applied Geophysics, 1995, 145(1): 167- 174.
Tang L L. 2018. Induced seismicity detection and discrimination of seismic source[Ph. D. thesis](in Chinese). Hefei: University of Science and Technology of China.
Tang L L, Zhang M, Wen L X. Support vector machine classification of seismic events in the Tianshan Orogenic belt. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018132
Tárraga M, Carniel R, Ortiz R, et al. On the predictability of volcano-tectonic events by low frequency seismic noise analysis at Teide-Pico Viejo volcanic complex, Canary Islands. Natural Hazards and Earth System Sciences, 2006, 6(3): 365- 376.
Telesca L, Lovallo M, Kiszely M M, et al. Discriminating quarry blasts from earthquakes in Vértes Hills (Hungary) by using the Fisher-Shannon method. Acta Geophysica, 2011, 59(5): 858- 871.
Tharwat A. Linear vs. quadratic discriminant analysis classifier: a tutorial. International Journal of Applied Pattern Recognition, 2016, 3(2): 145- 180.
Tharwat A, Gaber T, Ibrahim A, et al. Linear discriminant analysis: A detailed tutorial. AI Communications, 2017, 30(2): 169- 190.
Tomic J, Abercrombie R E, Do Nascimento A F. Source parameters and rupture velocity of small M ≤ 2. 1 reservoir induced earthquakes. Geophysical Journal International, 2009, 179(2): 1013- 1023.
Walsh F R, Zoback M D. Oklahoma's recent earthquakes and saltwater disposal. Science Advances, 2015, 1(5): e1500195
Wang R J, Gu Y J, Schultz R, et al. Faults and non-double-couple components for induced earthquakes. Geophysical Research Letters, 2018, 45(17): 8966- 8975.
Wang S B. Distribution patterns and influencing factors of coal mine seismicity. Inner Mongolia Coal Economy, 2021,(2): 16- 18.
Wang T T, Bian Y J, Zhang Y X, et al. Classification of earthquakes, explosions and mining-induced earthquakes based on XGBoost algorithm. Computers & Geosciences, 2023, 170: 105242
Wang W D, Zheng Y, Bian L. Analysis of regional recording characteristics of nuclear explosions and earthquakes. Recent Developments in World Seismology, 2015,(9): 117
Wang W H, Yin X X, Yang X L, et al. Research on Huating earthquake classification in Gansu Province based on machine learning method. Progress in Geophysics, 2022, 37(6): 2308- 2317.
Wang Y, Chen Y, Yu D Y, et al. Seismic airgun the key technology of future urban underground space exploration. Chinese Journal of Geophysics, 2022, 65(12): 4750- 4759.
Wei Y G, Yang Q L, Wang T T, et al. Earthquake and explosion identification based on deep learning residual network model. Acta Seismologica Sinica, 2019, 41(5): 646- 657.
Wenner M, Hibert C, Van Herwijnen A, et al. Near-real-time automated classification of seismic signals of slope failures with continuous random forests. Natural Hazards and Earth System Sciences, 2021, 21(1): 339- 361.
Wiemer S. Mapping and removing quarry blast events from seismicity catalogs. Bulletin of the Seismological Society of America, 2000, 90(2): 525- 530.
Wilson M P, Foulger G R, Gluyas J G, et al. HiQuake: The human-induced earthquake database. Seismological Research Letters, 2017, 88(6): 1560- 1565.
Wozniakowska P, Eaton D W. Machine learning-based analysis of geological susceptibility to induced seismicity in the montney formation, Canada. Geophysical Research Letters, 2020, 47(22): e2020GL089651
Xie L L. Seismic disasters and prevention in oil and gas fields. Oil-Gas Field Surface Engineering, 2007, 26(12): 1- 4.
Xu T H, Li J, Wang M Y, et al. Analysis of test data of underground nuclear explosions and calculation of irreversible deformation range. Explosion and Shock Waves, 2019, 39(12): 121101
Xu Z S, Wen X T, Tan Z T, et al. A brief introduction to non-natural earthquakes. City and Disaster Reduction, 2021,(6): 54- 58.
Yang F L, Yao F M, Ren G Y, et al. Study on structure imaging of land deep reflection seismic data excited by air gun source. Progress in Geophysics, 2023, 38(1): 348- 360.
Yang W, Wang B S, Zhang Y P, et al. Review on advances in the detection technology using airgun source fired in continental water. Chinese J. Geophys., 2021, 64(12): 4252- 4268.
Zhang H L, Eaton D W, Li G, et al. Discriminating induced seismicity from natural earthquakes using moment tensors and source spectra. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 972- 993.
Zhang Y Y, Wang T T, Su L N, et al. Study on the regional characteristics of the subsidence seismic records in the northern Shaanxi. Acta Seismologica Sinica, 2020, 42(6): 684- 696.
Zhou X, Zhong Y Y, Fu J W, et al. Contrast of time-frequency characteristics of wave spectrum between Shanxi reservoir induced earthquake and tectonic earthquake. Journal of Geodesy and Geodynamics, 2006, 26(4): 86- 91.
Zhou Y, Yue H, Kong Q, et al. Hybrid event detection and phase-picking algorithmusing convolutional and recurrent neural networks. Seismological Research Letters, 2019, 90(3): 1079- 1087.
Zhu X, Ghahramani Z. 2002. Learning from labeled and unlabeled data with label propagation.
Zhu X Y. Monitoring, characteristics and recognition of blasting earthquake in Dunhua. Heilongjiang Science, 2021, 12(12): 92- 93.
Zhuang J, Werner M J, Hainzl S, et al. 2011. Basic models of seismicity: Spatiotemporal models. Community Online Resource for Statistical Seismicity Analysis, doi: 10.5078/corssa-07487583.
廷改, . 水库诱发地震研究进展. 水利学报, 2018, 49(9): 1109- 1122.
姝荞, 思远, , 等. 紫坪铺水库诱发地震与构造地震波谱时频特征差异性研究. 中国地震, 2020, 36(3): 469- 483.
, 先康, 学林, 等. 陆地人工激发地震波的一种新方法. 科学通报, 2007, 52(11): 1317- 1321.
运泰, 忠良, 宛宛. 地震的分类. 城市与减灾, 2003,(1): 13- 15.
秀玲, , 昭娣, 等. 陕西榆林地区北部塌陷地震初步分析. 灾害学, 2009, 24(4): 81- 83.
守中, , , 等. 中国陷落地震历史资料整理与研究. 国际地震动态, 2019,(6): 3- 13.
甜甜, 惠红, 元泽, 等. 华北平原地下水开采对区域地震活动性的影响. 地球物理学报, 2022, 65(8): 2931- 2944.
元敏, 胜利, 晓慧. 注水诱发地震的研究进展. 地震工程学报, 2023, 45(2): 387- 400.
兴林, 金蓉, 志伟. 四川盆地南部持续增长的地震活动及其与工业注水活动的关联. 中国科学: 地球科学, 2020, 50(11): 1505- 1532.
李君, 周一剑. 2020. 基于迁移学习的微震检测: 深度学习模型的实用化方法——以汶川余震与俄克拉荷马诱发地震数据为例. //2020年中国地球科学联合学术年会论文集. 重庆: 中国地球物理学会, 2619.
天珍, , , 等. 煤矿开采诱发地震的成因及预防. 徐州工程学院学报(自然科学版), 2011, 26(3): 16- 20.
, 美峰, . 采矿诱发地震分类的探讨. 岩石力学与工程学, 2006, 25(S2): 3679- 3686.
, , 姝荞, 等. 基于支持向量机算法的地震事件分类研究——以东北地区为例. 地球物理学报, 2023, 66(12): 5030- 5040.
怀存, 保平, 洪瑞, 等. 构造地震与塌陷地震对比研究. 地震学报, 1990, 12(4): 448- 455.
建民, 宝善, 洪魁, 等. 大容量气枪震源特征及地震波传播的震相分析. 地球物理学报, 2008, 51(1): 206- 212.
, 建思, 宝峰, 等. 首都圈地区爆破、矿塌和天然地震的识别研究. 地震学报, 2012, 34(2): 202- 214.
安明, 教兵, 春恒, 等. 广西陷落地震研究及其防灾减灾对策. 华南地震, 2015, 35(4): 1- 9.
桂纯, 宝善, 洪魁, 等. 气枪震源在地球深部结构探测中的应用研究进展. 地球物理学进展, 2006, 21(2): 400- 407.
钟灵. 桂林附近陷落地震分布、形成及特征. 水文地质工程地质, 1998, 25(4): 38- 41.
跃红, 建平, 立华, 等. 火山地震信号和火山颤动震源模型. 地球物理学进展, 2009, 24(2): 382- 390.
七虎, 士海. 爆破地震效应. 爆破, 2004, 21(2): 1- 5.
昭伟, 春叶, 晓茹. 半监督自训练的方面提取. 智能系统学报, 2019, 14(4): 635- 641.
Гадьперин Е. И. 1989. 地震勘探偏振法. 何樵登, 杨宝俊译. 北京: 石油工业出版社.
唐兰兰. 2018. 诱发地震检测及地震震源分类[博士论文]. 合肥: 中国科学技术大学.
少波. 煤矿矿震分布规律及其影响因素. 内蒙古煤炭经济, 2021,(2): 16- 18.
卫东, , . 核爆与地震的区域记录特征分析. 国际地震动态, 2015,(9): 117
维欢, 欣欣, 秀隆, 等. 基于机器学习方法的甘肃华亭地震分类研究. 地球物理学进展, 2022, 37(6): 2308- 2317.
, , 大勇, 等. 未来城市地下空间探测的关键技术——大陆气枪震源. 地球物理学报, 2022, 65(12): 4750- 4759.
永刚, 千里, 婷婷, 等. 基于深度学习残差网络模型的地震和爆破识别. 地震学报, 2019, 41(5): 646- 657.
礼立. 论油气田的地震灾害和防御. 油气田地面工程, 2007, 26(12): 1- 4.
天涵, , 明洋, 等. 地下核爆诱发工程性地震实测数据分析与不可逆变形范围计算. 爆炸与冲击, 2019, 39(12): 121101
志双, 鑫涛, 专条, 等. 浅谈非天然地震. 城市与减灾, 2021,(6): 54- 58.
飞龙, 凤鸣, 广莹, 等. 基于气枪震源激发的陆地深层反射地震资料构造成像研究. 地球物理学进展, 2023, 38(1): 348- 360.
, 宝善, 云鹏, 等. 陆地水体气枪震源探测技术回顾与进展. 地球物理学报, 2021, 64(12): 4252- 4268.
媛媛, 婷婷, 丽娜, 等. 陕北塌陷记录的区域特征研究. 地震学报, 2020, 42(6): 684- 696.
, 羽云, 建武, 等. 珊溪水库地震与构造地震波谱时-频特征的对比研究. 大地测量与地球动力学, 2006, 26(4): 86- 91.
星晔. 敦化爆破地震的监测、特征与识别. 黑龙江科学, 2021, 12(12): 92- 93.

感谢审稿专家提出的修改意见.

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(3753 KB)

Accesses

Citation

Detail

Sections
Recommended

/