Research progress of fault identification technology based on seismic data

Lin ZHANG, Yuan MENG, LiSha QI, Abudusalamu ALIMUJIANG, Jun DAI, Ang LI, LiYan ZHANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 208-219.

PDF(6895 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6895 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 208-219. DOI: 10.6038/pg2025HH0563

Research progress of fault identification technology based on seismic data

Author information +
History +

Abstract

With the further evolution of oil and gas exploration and development technology, the traditional artificial fault interpretation has some defects such as strong subjectivity, heavy workload and low efficiency, which cannot meet the needs of efficient identification of faults on seismic data and the exact realization of structural characteristics in the study area interpretation needs. This article explores the process, advantages, application scope, and limitations of various representative fault identification technologies found on a large number of domestic and foreign literature. Based on this, it can be roughly divided into three categories of fault identification technologies represented by single seismic attribute, multi attribute fusion, and artificial intelligence. Single attribute fault interpretation techniques mainly include spectral decomposition, coherence volume, variance volume, etc. These techniques and methods are mainly applied in the early stage of seismic exploration, and are relatively effective for the identification of large faults. In terms of small fault recognition, the seismic multi-attribute fusion technology based on RBG attribute fusion has unique advantages. By changing the weight of different attributes, the structural information of the fault is highlighted, so as to reduce the interference and reduce interference and ambiguity. With the advent of the big data era, fault identification technology based on artificial intelligence has been widely used. Ant body tracking belongs to the early artificial intelligence fault identification technology, which partly improves the accuracy of fault identification, but there are still some problems such as strong multi-solution and low anti-noise ability. Since then, neural networks have been introduced into seismic data processing and interpretation, mainly including image classification and semantic segmentation. In particular, residual neural networks, convolutional neural networks, fully convolutional neural networks and U-Net have been widely used in the research of fault recognition, which promote further development of automation and intelligence in fault recognition. This paper summarizes and compares various fault identification techniques, proposes future development directions, techniques, proposes future development directions, which provides new solutions for the use of seismic data for fault interpretation and identification in oil and gas exploration for further.

Key words

Fault identification / Seismic attribute analysis / Fusion / Artificial intelligence / Neural network

Cite this article

Download Citations
Lin ZHANG , Yuan MENG , LiSha QI , et al . Research progress of fault identification technology based on seismic data[J]. Progress in Geophysics. 2025, 40(1): 208-219 https://doi.org/10.6038/pg2025HH0563

References

Akuhara T , Mochizuki K . Application of cluster analysis based on waveform cross-correlation coefficients to data recorded by ocean-bottom seismometers: results from off the Kii Peninsula. Earth, Planets and Space, 2014, 66 (1): 80
Al-Dossary S , Marfurt K J . 3D volumetric multispectral estimates of reflector curvature and rotation. Geophysics, 2006, 71 (5): P41- P51.
An Y , Guo J L , Ye Q , et al. Deep convolutional neural network for automatic fault recognition from 3D seismic datasets. Computers & Geosciences, 2021, 153: 104776
Bahorich M , Farmer S . 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. The Leading Edge, 1995, 14 (10): 1053- 1058.
Breiman L . Random forests. Machine Learning, 2001, 45 (1): 5- 32.
Cai H P . Improvement of variance cube technique and its application in seismic interpretation. Coal Geology & Exploration, 2008, 36 (1): 74- 76. 74-76, 80
Cai Z D , Peng G X , Li Q , et al. Fault characteristics identification at well sites on VSP data. Oil Geophysical Prospecting, 2018, 53 (S2): 90- 97.
Carter L , Wilkin J . Abyssal circulation around New Zealand—a comparison between observations and a global circulation model. Marine Geology, 1999, 159 (1-4): 221- 239.
Chakraborty A , Okaya D . Frequency-time decomposition of seismic data using wavelet-based methods. Geophysics, 1995, 60 (6): 1906- 1916.
Chang D K , Yong X S , Wang Y H , et al. Seismic fault interpretation based on deep convolutional neural networks. Oil Geophysical Prospecting, 2021, 56 (1): 1- 8.
Chang Y X . Application of seismic attribute technology in coalfield fault identification. Coal Geology of China, 2015, 27 (2): 57- 61.
Chen G , Liu Y . Research progress of automatic fault recognition based on artificial intelligence. Progress in Geophysics, 2021, 36 (1): 119- 131.
Chen G F , Shi Y , Yang H D , et al. Fault identification method of attribute fusion based on seismic optimized frequency of seismic data. Chinese Journal of Geophysics, 2023, 66 (3): 1232- 1243.
Chopra S , Misra S , Marfurt K J . Coherence and curvature attributes on preconditioned seismic data. The Leading Edge, 2011, 30 (4): 386- 393.
Chopra S , Marfurt K J . Adopting multispectral dip components for coherence and curvature attribute computations. The Leading Edge, 2020, 39 (8): 593- 596.
Colorni A. 1991. Distributed optimization by ant colonies. //Proceedings of European Conference on Artificial Life. Paris: The MIT Press, 134-142.
Cordón O, Herrera F, Fernández de Viana I, et al. 2000. A new ACO model integrating evolutionary computation concepts: the best-worst ant system. //Proceedings of ANTS'2000. From Ant Colonies to Artificial Ants: Second International Workshop on Ant Algorithms. Brussels, 22-29.
Cortes C , Vapnik V . Support-vector networks. Machine Learning, 1995, 20 (3): 273- 297.
de Matos M C D , Yenugu M , Angelo S M , et al. Integrated seismic texture segmentation and cluster analysis applied to channel delineation and chert reservoir characterization. Geophysics, 2011, 76 (5): P11- P21.
Dong S Z , Lu G C , Ma J , et al. Knowledge of several special representative features of normal fault on seismic section. Oil Geophysical Prospecting, 2003, 38 (1): 72- 76.
Dorigo M , Maniezzo V , Colorni A . Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26 (1): 29- 41.
Feng Q , Liu C Y , Liu X Y , et al. Minor faults identification in the Ertuokeqianqi area. Progress in Geophysics, 2021, 36 (4): 1512- 1520.
Feng R , McEvilly T V . Interpretation of seismic reflection profiling data for the structure of the San Andreas fault zone. Acta Seismologica Sinica, 1984, 6 (3): 249- 263.
Gabor D . Theory of communication. Part 1: the analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 1946, 93 (26): 429- 441.
Gao J H , Wan T , Chen W C , et al. Three parameter wavelet and its applications to seismic data processing. Chinese Journal of Geophysics, 2006, 49 (6): 1802- 1812.
He K M, Zhang X Y, Ren S Q, et al. 2016. Deep residual learning for image recognition. //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 770-778, doi: 10.1109/CVPR.2016.90.
He Y L , Wen X T , Wang J T , et al. Fault recognition based on 3D U-Net+ +L3 convolutional neural network. Progress in Geophysics, 2022, 37 (2): 607- 616.
Jeong W K , Whitaker R , Dobin M . Interactive 3D seismic fault detection on the graphics hardware. Volume Graphics, 2006, 10 (6): 111- 118.
Kortström J , Uski M , Tiira T . Automatic classification of seismic events within a regional seismograph network. Computers & Geosciences, 2016, 87: 22- 30.
Lecun Y , Boser B , Denker J S , et al. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1 (4): 541- 551.
Li C , Zhou L L , Jiang Y , et al. Fault interpretation based on integration of well and seismic data in Changyuan Oilfield, Daqing. Oil Geophysical Prospecting, 2017, 52 (3): 548- 552.
Li N , Wang L Y , Huang S B , et al. 3D seismic fine structural interpretation in complex fault zones based on the high-definition ant-tracking attribute volume. Oil Geophysical Prospecting, 2019, 54 (1): 182- 190.
Li T T , Hou S Y , Ma S Z , et al. Overview and research progress of fault identification method. Progress in Geophysics, 2018, 33 (4): 1507- 1514.
Li Y D , Hao Z B , Lei H . Survey of convolutional neural network. Journal of Computer Applications, 2016, 36 (9): 2508- 2515. 2508-2515, 2565
Liu X W , Liu H , Li Y M , et al. Study on characteristics of seismic stratigraphy by generalized S-transform. Progress in Geophysics, 2006, 21 (2): 440- 451.
Liu Z J , He X L , Zhang Z H , et al. Low-order fault identification technique based on 3D U-Net full convolutional neural network (CNN). Progress in Geophysics, 2021, 36 (6): 2519- 2530.
Liu Z N , Song C Y , Li Z Y , et al. 3D modeling of geological anomalies based on segmentation of multiattribute fusion. Applied Geophysics, 2016, 13 (3): 519- 528. 519-528, 581
Lou M , Cai H , He X K , et al. Geological-geophysical integrated lithologic boundary characterization technology and its application in C oilfield. Journal of Jilin University (Earth Science Edition), 2023, 53 (2): 622- 634.
Lu P F , Du W L , Li L , et al. Intelligent recognition method of low-grade faults based on VNet deep learning architecture. Oil Geophysical Prospecting, 2022, 57 (6): 1276- 1286.
Marfurt K J , Kirlin R L , Farmer S L , et al. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics, 1998, 63 (4): 1150- 1165.
Qiu H. 2011. Improvement of C3 coherence algorithm and application in fault interpretation [Master's thesis] (in Chinese). Xi'an: Xi'an University of Science and Technology, doi: 10.7666/d.d155759.
Randen T, Monsen E, Signer C, et al. 2000. Three-dimensional texture attributes for seismic data analysis. //70th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 668-671, doi: 10.1190/1.1816155.
Robein M E . EAGE education tour IV: modern seismic imaging-a review of the techniques, their principles, merits andlimitations. First Break, 2009, 27 (12): 16- 18.
Ronneberger O, Fischer P, Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation. //18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015, 234-241.
Shelhamer E , Long J , Darrell T . Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (4): 640- 651.
Si L , Wang Y H , Tong H H , et al. 3D visualization well-seismic match fault interpretation based on seismic attribute. Reservoir Evaluation and Development, 2013, 3 (3): 1- 4.
Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. //3rd International Conference on Learning Representations. San Diego: ICLR, doi: 10.48550/arXiv.1409.1556.
Stutzle T, Hoos H. 1997. "MAX-MIN Ant System and local search for the traveling salesman problem, " Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97), Indianapolis, IN, USA, 309-314, doi: 10.1109/ICEC.1997.592327.
Su Y , Yang Y , Bai Z H , et al. A study of depositional microfacies and method of reservoir prediction by integrating well log and seismic information in dense well pattern-taking Xing 56 block, Xingshugang oil field, Daqing as an example. Earth Science Frontiers, 2008, 15 (1): 110- 116.
Sun X P , Du S T . An application of power algorithm in the seismic attribute analysis. Computing Techniques for Geophysical and Geochemical Exploration, 2000, 22 (4): 316- 321.
Sun Z Y , Peng S P , Zou G G . Automatic identification of small faults based on SVM and seismic data. Journal of China Coal Society, 2017, 42 (11): 2945- 2952.
Tian T , Xia T X , Yan T , et al. Application of formation dip in the fine description of fault——take A oilfield in Bohai Bay Basin as an example. Progress in Geophysics, 2017, 32 (5): 2236- 2240.
Trendelenburg M , Marfurt J , Gerber I , et al. Lack of occurrence of severe lupus nephritis among anti-C1 q autoantibody-negative patients. Arthritis & Rheumatism, 1999, 42 (1): 187- 188.
Wan H , Fan X Y , Liu T , et al. Methods and applications for improving pre-stack seismic data. Progress in Geophysics, 2012, 27 (1): 304- 311.
Wang Z, AlRegib G. 2014. Automatic fault surface detection by using 3D Hough transform. //84th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 1439-1444, doi: 10.1190/segam2014-1590.1.
Wu J Z, He S M, Yang Q Q, et al. 2020. Low-sequence faults identification based on fully convolutional neural network (FCN). //SPG/SEG Nanjing 2020 International Geophysical Conference (in Chinese). Nanjing: SPG, 1010-1012.
Wu X M , Liang L M , Shi Y Z , et al. FaultSeg3D: using synthetic datasets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 2019, 84 (3): IM35- IM45.
Xie S N , Tu Z W . Holistically-nested edge detection. International Journal of Computer Vision, 2017, 125 (1-3): 3- 18.
Xiong X J , Yin C , Zhang B L , et al. A new coherency algorithm based on higher-order statistics. Chinese Journal of Engineering Geophysics, 2004, 1 (3): 278- 281.
Yang J , Ding R W , Lin N T , et al. Research progress of intelligent identification of seismic faults based on deep learning. Progress in Geophysics, 2022, 37 (1): 298- 311.
Yang J , Lu R Q , Tao W , et al. MultiURNet for 3D seismic fault attributes fusion detection combined with PCA. Journal of Applied Geophysics, 2024, 221: 105296
Yun L , Cheng M M , Hu X W , et al. Richer convolutional features for edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (8): 1939- 1946.
Zhang L H , Wang H J , Zhao L , et al. Technologies in three-dimensional visualization for real-time fusion of multiple seismic attribute volumes. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41 (3): 426- 432.
Zhang W , Zhu B H , Zhao Z . Application of ant tracking technology based on dip guided coherence strengthening attribute in automatic fault interpretation. China Science & Technology Overview, 2017, (17): 140- 142. 140-142, 145
Zhang Z , Yan Z , Gu H M . Automatic fault recognition with residual network and transfer learning. Oil Geophysical Prospecting, 2020, 55 (5): 950- 956.
Zhou S , Wang Y L , Han T B , et al. Minor fault joint-interpretation. Oil Geophysical Prospecting, 2012, 47 (S1): 50- 54.
Zhu B H . Improved ant tracking crack detection algorithm and its application. Offshore Oil, 2019, 39 (3): 27- 32.
涵鹏 . 方差体的改进算法及在地震解释中的应用. 煤田地质与勘探, 2008, 36 (1): 74- 76. 74-76, 80
志东 , 更新 , , 等. 利用VSP数据研究井旁断层特征. 石油地球物理勘探, 2018, 53 (S2): 90- 97.
德宽 , 学善 , 一惠 , 等. 基于深度卷积神经网络的地震数据断层识别方法. 石油地球物理勘探, 2021, 56 (1): 1- 8.
益行 . 地震属性技术在煤田断层识别中的应用. 中国煤炭地质, 2015, 27 (2): 57- 61.
, . 基于人工智能的断层自动识别研究进展. 地球物理学进展, 2021, 36 (1): 119- 131.
国飞 , , 会东 , 等. 基于优势低频带地震数据的属性融合断层识别方法. 地球物理学报, 2023, 66 (3): 1232- 1243.
树政 , 刚臣 , , 等. 对地震剖面中正断层几种特殊表现形式的认识. 石油地球物理勘探, 2003, 38 (1): 72- 76.
, 池洋 , 显阳 , 等. 小断层识别技术在鄂托克前旗地区的应用. 地球物理学进展, 2021, 36 (4): 1512- 1520.
, McEvilly T V . 由地震反射波剖面研究圣安德烈斯断层带的结构. 地震学报, 1984, 6 (3): 249- 263.
静怀 , , 文超 , 等. 三参数小波及其在地震资料分析中的应用. 地球物理学报, 2006, 49 (6): 1802- 1812.
易龙 , 晓涛 , 锦涛 , 等. 基于3D U-Net+ +L3卷积神经网络的断层识别. 地球物理学进展, 2022, 37 (2): 607- 616.
, 莉莉 , , 等. 大庆长垣油田井震结合断层解释技术及效果. 石油地球物理勘探, 2017, 52 (3): 548- 552.
, 龙颖 , 胜兵 , 等. 利用高清蚂蚁体精细解释复杂断裂带. 石油地球物理勘探, 2019, 54 (1): 182- 190.
婷婷 , 思宇 , 世忠 , 等. 断层识别方法综述及研究进展. 地球物理学进展, 2018, 33 (4): 1507- 1514.
彦冬 , 宗波 , . 卷积神经网络研究综述. 计算机应用, 2016, 36 (9): 2508- 2515. 2508-2515, 2565
喜武 , , 幼铭 , 等. 基于广义S变换研究地震地层特征. 地球物理学进展, 2006, 21 (2): 440- 451.
致宁 , 承云 , 志勇 , 等. 基于多地震属性融合分割的地质异常体三维模型构建(英文). 应用地球物理: 英文版, 2016, 13 (3): 519- 528. 519-528, 581
宗杰 , 锡雷 , 祖豪 , 等. 基于3D U-Net全卷积神经网络的低序级断层识别技术. 地球物理学进展, 2021, 36 (6): 2519- 2530.
, , 贤科 , 等. 地质-地球物理综合岩性边界刻画技术及其在C油田中的应用. 吉林大学学报(地球科学版), 2023, 53 (2): 622- 634.
鹏飞 , 文龙 , , 等. 基于VNet深度学习架构的低序级断层智能识别方法. 石油地球物理勘探, 2022, 57 (6): 1276- 1286.
邱慧. 2011. C3相干体算法的改进及在断层解释中的应用[硕士论文]. 西安: 西安科技大学, doi: 10.7666/d.d155759.
, 彦辉 , 洪海 , 等. 基于地震属性体的三维可视化井震匹配断层解释. 油气藏评价与开发, 2013, 3 (3): 1- 4.
, , 振华 , 等. 密井网区井震结合进行沉积微相研究及储层预测方法探讨——以大庆杏树岗油田杏56区为例. 地学前缘, 2008, 15 (1): 110- 116.
夕平 , 世通 . 乘幂法在地震属性分析中的应用. 物探化探计算技术, 2000, 22 (4): 316- 321.
振宇 , 苏萍 , 冠贵 . 基于SVM算法的地震小断层自动识别. 煤炭学报, 2017, 42 (11): 2945- 2952.
, 同星 , , 等. 地层倾角信息在断层精细刻画中的应用——以渤海湾盆地A油田为例. 地球物理学进展, 2017, 32 (5): 2236- 2240.
, 小意 , , 等. 叠前地震资料提高分辨率处理方法及应用. 地球物理学进展, 2012, 27 (1): 304- 311.
吴吉忠, 何书梅, 杨倩倩, 等. 2020. 基于全卷积神经网络(FCN)的低序级断层识别方法研究. //SPG/SEG南京2020年国际地球物理会议论文集(中文). 南京: 中国石油学会石油物探专业委员会, 1010-1012.
桂梅 , 书耕 , , 等. 用相干体属性开展断层识别. 西北地质, 2019, 52 (1): 244- 249.
晓军 , , 白林 , 等. 一种新的基于高阶统计量的相干体算法. 工程地球物理学报, 2004, 1 (3): 278- 281.
, 仁伟 , 年添 , 等. 基于深度学习的地震断层智能识别研究进展. 地球物理学进展, 2022, 37 (1): 298- 311.
理慧 , 汉钧 , , 等. 多地震属性体实时融合三维可视化技术. 物探化探计算技术, 2019, 41 (3): 426- 432.
, 博华 , . 基于倾角导向相干加强属性的蚂蚁追踪技术在断层自动解释中的应用. 中国科技纵横, (17): 140-142, 2017, 145
, , 汉明 . 基于残差网络与迁移学习的断层自动识别. 石油地球物理勘探, 2020, 55 (5): 950- 956.
, 永莉 , 天宝 , 等. 小断层综合解释技术及其应用. 石油地球物理勘探, 2012, 47 (S1): 50- 54.
宝衡 . 改进的蚂蚁追踪裂缝检测算法及其应用研究. 海洋石油, 2019, 39 (3): 27- 32.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(6895 KB)

Accesses

Citation

Detail

Sections
Recommended

/