Diffraction wave separation and imaging of ground penetrating radar based on k-means clustering in multiple singular spectrum analysis

MinLing WANG, HaoLin WANG, HongHua WANG, Xin ZHOU, Jie ZHAO

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 337-348.

PDF(5986 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5986 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 337-348. DOI: 10.6038/pg2025HH0570

Diffraction wave separation and imaging of ground penetrating radar based on k-means clustering in multiple singular spectrum analysis

Author information +
History +

Abstract

Ground Penetrating Radar (GPR) is widely used in the fine detection of shallow structures such as urban road disease detection and archaeology, etc. Small-scale underground geological bodies such as cavities and cracks are usually the most concerned detection objects. In general, the energy of hyperbolic diffracted waves generated by small-scale underground geological bodies in the measured GPR profile is weaker than the linear reflected waves generated by the subsurface layered interface, and is easily mixed or masked by the reflected waves with stronger energy, which seriously interferes with the accurate identification and interpretation of small-scale targets. To this end, this paper proposes a multiple singular spectrum analysis method based on k-means clustering algorithm to separate the reflected and diffracted waves in the GPR profile. Then, the k-means clustering algorithm is used to cluster the all singular spectrum, and the singular values in the singular spectrum are divided into k classes according to the similarity, and the several types of singular values representing the reflected wave and the noise are set to zero, and some of the singular values representing the diffracted wave are retained to reconstruct the GPR diffraction wave field. Numerical experiments show that the multiple singular spectrum analysis method based on k-means clustering algorithm can efficiently separate the reflected wave from the diffracted wave. Compared with the reverse time migration of the unseparated GPR data, the imaging resolution of the small-scale geological body is higher and easier to be identified in the separated diffraction wave reverse time migration, which provides a feasible and effective method for the high-precision interpretation of small-scale targets.

Key words

Ground Penetrating Radar(GPR) / Diffracted wave separation / Hankel matrix / Multiple singular spectrum analysis / k-means clustering

Cite this article

Download Citations
MinLing WANG , HaoLin WANG , HongHua WANG , et al . Diffraction wave separation and imaging of ground penetrating radar based on k-means clustering in multiple singular spectrum analysis[J]. Progress in Geophysics. 2025, 40(1): 337-348 https://doi.org/10.6038/pg2025HH0570

References

Akalin M F, Khan F A, Saleh A A S. 2013. An effective methodology for high resolution diffraction imaging. //Proceedings of the 83th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 4060-4065.
Chen M Z , Deng G X , Zhu S W , et al. Application of diffraction wave separation and imaging technique in weak seismic reflection of carbonate reservoir prediction in Tahe Oilfield. Geophysical Prospecting for Petroleum, 2015, 54 (2): 234- 240.
Dai H M , Xu A Q , Sun W C . Signal denoising method based on improve singular spectrum analysis. Transactions of Beijing Institute of Technology, 2016, 36 (7): 727- 732. 727-732, 759
Fomel S, Landa E, Taner M T. 2006. Post-stack velocity analysis by separation and imaging of seismic diffractions. //Proceedings of the 76th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 2559-2563, doi: 10.1190/1.2370052.
Fomel S , Landa E , Taner M T . Poststack velocity analysis by separation and imaging of seismic diffractions. Geophysics, 2007, 72 (6): U89- U94.
Gong J B. 2021. Research on reverse time migration imaging of three-dimensional multi-offset ground penetrating radar data [Master's thesis](in Chinese). Guilin: Guilin University of Technology, doi: 10.27050/d.cnki.gglgc.2021.000021.
Huang J P , Li Z C , Kong X , et al. The review of the wave field separation method about reflection and diffraction based on the PWD. Progress in Geophysics, 2012, 27 (6): 2499- 2510.
Kanasewich E R , Phadke S M . Imaging discontinuities on seismic sections. Geophysics, 1988, 53 (3): 334- 345.
Karimpouli S , Malehmir A , Hassani H , et al. Automated diffraction delineation using an apex-shifted Radon transform. Journal of Geophysics and Engineering, 2015, 12 (2): 199- 209.
Khaidukov V , Landa E , Moser T J . Diffraction imaging by focusing-defocusing: an outlook on seismic superresolution. Geophysics, 2004, 69 (6): 1478- 1490.
Lin P. 2020. Study on seismic diffraction separation and high-precision imaging method [Ph. D. thesis](in Chinese). Beijing: China University of Mining Technology (Beijing).
Liu T C , Hu J T , Wang Z H , et al. Diffraction wavefield separation and imaging using singular spectrum analysis. Geophysical Prospecting for Petroleum, 2014, 53 (1): 46- 53.
Luan X W , Yang J J . A review of seismic diffraction wavefield separation and imaging methods. Geophysical Prospecting for Petroleum, 2022, 61 (5): 761- 770.
Luo T T , Xu J X , Qin Z , et al. Hybrid-domain high-resolution Radon transform and its application in diffraction wave separation and imaging. Geophysical Prospecting for Petroleum, 2020, 59 (6): 890- 900.
Moser T J , Howard C B . Diffraction imaging in depth. Geophysical Prospecting, 2008, 56 (5): 627- 641.
Nowak E J, Imhof M G. 2004. Diffractor localization via weighted Radon transforms. //Proceedings of the 74th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 2108-2111, doi: 10.1190/1.1851199.
Oropeza V , Sacchi M . Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics, 2011, 76 (3): V25- V32.
Tao Y , Yang F , Liu Y , et al. Research and optimization of K-means clustering algorithm. Computer Technology and Development, 2018, 28 (6): 90- 92.
Wang M L , Liao T Y , Wang H H , et al. 3D reverse time migration of ground penetrating radar based on finite difference time domain method. Progress in Geophysics, 2019, 34 (4): 1671- 1678.
Wang Z H , Q T , Liu Z D , et al. Progress of seismic diffractions separation methods. Progress in Geophysics, 2019, 34 (1): 221- 228.
Wei W , Gao H , Liu Z Y . Separation and imaging of seismic diffractions using singular value decomposition. Geophysical Prospecting for Petroleum, 2020, 59 (2): 236- 241.
Xu J , Liu B , Zhao Q X . Seismic imaging of small-scale geological body using diffraction wave based on SVD algorithm. Geophysical & Geochemical Exploration, 2019, 43 (5): 1074- 1082.
Zhu S W , Li P , Ning J R . Reflection/diffraction separation with a hybrid method of local dip filter and prediction inversion. Chinese Journal of Geophysics, 2013, 56 (1): 280- 288.
明政 , 光校 , 生旺 , 等. 绕射波分离成像技术在塔河油田碳酸盐岩地震弱反射储层预测中的应用. 石油物探, 2015, 54 (2): 234- 240.
豪民 , 爱强 , 伟超 . 基于改进奇异谱分析的信号去噪方法. 北京理工大学学报, 2016, 36 (7): 727- 732. 727-732, 759
龚俊波. 2021. 三维多偏移距探地雷达数据的逆时偏移成像方法研究[硕士论文]. 桂林: 桂林理工大学, doi: 10.27050/d.cnki.gglgc.2021.000021.
建平 , 振春 , , 等. 基于PWD的绕射波波场分离成像方法综述. 地球物理学进展, 2012, 27 (6): 2499- 2510.
林朋. 2020. 地震绕射波分离与高精度成像方法研究[博士论文]. 北京: 中国矿业大学(北京).
太臣 , 江涛 , 华忠 , 等. 奇异值谱分析在绕射波分离及成像中的应用. 石油物探, 2014, 53 (1): 46- 53.
锡武 , 佳佳 . 地震绕射波波场分离与成像方法综述. 石油物探, 2022, 61 (5): 761- 770.
腾腾 , 基祥 , , 等. 混合域高分辨率Radon变换及其在绕射波分离与成像中的应用. 石油物探, 2020, 59 (6): 890- 900.
, , , 等. K均值聚类算法的研究与优化. 计算机技术与发展, 2018, 28 (6): 90- 92.
敏玲 , 天元 , 洪华 , 等. 基于FDTD的探地雷达三维逆时偏移成像. 地球物理学进展, 2019, 34 (4): 1671- 1678.
志辉 , 庆田 , 振东 , 等. 地震绕射波分离方法研究进展. 地球物理学进展, 2019, 34 (1): 221- 228.
, 鸿 , 忠岩 . 奇异值分解技术在绕射波分离成像中的应用研究. 石油物探, 2020, 59 (2): 236- 241.
, , 庆献 . 基于SVD的小尺度地质体地震绕射波成像. 物探与化探, 2019, 43 (5): 1074- 1082.
生旺 , , 俊瑞 . 局部倾角滤波和预测反演联合分离绕射波. 地球物理学报, 2013, 56 (1): 280- 288.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5986 KB)

Accesses

Citation

Detail

Sections
Recommended

/