Pre-stack seismic inversion method for physical properties of complex tight sandstone reservoirs based on the rock physics model

Bing ZHANG, HongGang MI, HongXing LIU, Wei XU, Hao SHI, JunChao GUO

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 220-229.

PDF(5784 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5784 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 220-229. DOI: 10.6038/pg2025HH0583

Pre-stack seismic inversion method for physical properties of complex tight sandstone reservoirs based on the rock physics model

Author information +
History +

Abstract

The seismic inversion method based on rock physics constraints aims to deal with the challenge of accurately predicting physical properties of complex tight sandstone reservoirs, which often exhibit strong ambiguity. This ambiguity makes it difficult to characterize the reservoir and accurately select high-quality ones. By employing theoretical rock physics modeling and a Bayesian probability inversion framework, along with pre-stack seismic data and well logging data, a method is proposed to predict the physical properties of complex tight sandstone reservoirs through seismic analysis. This approach allows for a detailed characterization of these reservoirs and provides technical support for exploring such complex formations. Because complex tight sandstone reservoirs typically have low porosity, low permeability, and intricate pore structures, assuming a uniform pore structure makes traditional rock physics modeling and reservoir parameter seismic inversion methods inadequate. Hence, this paper derives seismic reflection coefficient equations for complex tight sandstone reservoirs, considering parameters like porosity, water saturation, and pore aspect ratio. Using these equations, a Bayesian pre-stack seismic inversion method is developed, which directly estimates the physical parameters and pore geometry of complex tight sandstone reservoirs using Bayesian linear theory. Results indicate that this method not only provides more accurate predictions of rock physics parameters but also yields physical property estimates that align better with actual wellbore measurements. This demonstrates the method's effectiveness and precision in predicting physical properties of complex tight sandstone reservoirs using seismic data.

Key words

Rock physics / Tight sandstone reservoir / Pre-stack inversion / Physical property prediction / Bayesian theory

Cite this article

Download Citations
Bing ZHANG , HongGang MI , HongXing LIU , et al . Pre-stack seismic inversion method for physical properties of complex tight sandstone reservoirs based on the rock physics model[J]. Progress in Geophysics. 2025, 40(1): 220-229 https://doi.org/10.6038/pg2025HH0583

References

Azevedo L , Matias L , Turco F , et al. Geostatistical seismic inversion for temperature and salinity in the Madeira Abyssal Plain. Frontiers in Marine Science, 2021, 8: 685007
Berryman J G . Long-wavelength propagation in composite elastic media I. Spherical inclusions. The Journal of the Acoustical Society of America, 1980, 68 (6): 1809- 1819.
Bosch M , Cara L , Rodrigues J , et al. A Monte Carlo approach to the joint estimation of reservoir and elastic parameters from seismic amplitudes. Geophysics, 2007, 72 (6): O29- O39.
Bosch M , Mukerji T , Gonzalez E F . Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review. Geophysics, 2010, 75 (5): 75A165- 75A176.
Brooks S , Gelman A , Jones G , et al. Handbook of Markov Chain Monte Carlo. New York: Chapman and Hall CRC Press, 2011
Dai J X , Ni Y Y , Wu X Q . Tight gas in China and its significance in exploration and exploitation. Petroleum Exploration and Development, 2012, 39 (3): 257- 264.
Dias J , Lopez J L , Velloso R , et al. A workflow for multimineralogic carbonate rock physics modelling in a Bayesian framework: Brazilian pre-salt reservoir case study. Geophysical Prospecting, 2021, 69 (3): 650- 676.
Dvorkin J , Gutierrez M A , Grana D . Seismic Reflections of Rock Properties. Cambridge: Cambridge University Press, 2014
Grana D . Bayesian linearized rock-physics inversion. Geophysics, 2016, 81 (6): D625- D641.
Grana D , Fjeldstad T , Omre H . Bayesian Gaussian mixture linear inversion for geophysical inverse problems. Mathematical Geosciences, 2017, 49 (4): 493- 515.
Grana D . Bayesian petroelastic inversion with multiple prior models. Geophysics, 2020, 85 (5): M57- M71.
Grana D , Azevedo L , de Figueiredo L , et al. Probabilistic inversion of seismic data for reservoir petrophysical characterization: review and examples. Geophysics, 2022, 87 (5): M199- M216.
Guo Q , Ba J , Luo C . Nonlinear petrophysical amplitude variation with offset inversion with spatially variable pore aspect ratio. Geophysics, 2022, 87 (4): M111- M125.
He W , Ma S Z , Yuan J R , et al. Modeling method of the multi-scale and multiple medium unconventional tight oil-reservoir: a case study of the upper reservoir in Lucaogou formation of Junggar basin. Progress in Geophysics, 2017, 32 (2): 618- 625.
Hill R . The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 1952, 65 (5): 349- 354.
Jia A L , Wei Y S , Guo Z , et al. Development status and prospect of tight sandstone gas in China. Natural Gas Industry, 2022, 42 (1): 83- 92.
Keys R G , Xu S Y . An approximation for the Xu-White velocity model. Geophysics, 2002, 67 (5): 1406- 1414.
Lang X Z , Grana D . Bayesian pressure-saturation inversion of time-lapse seismic data. SEG Technical Program Expanded Abstracts, 2018, 3151- 3155.
Li H B , Zhang J J , Cai S J , et al. A two-step method to apply Xu-Payne multi-porosity model to estimate pore type from seismic data for carbonate reservoirs. Petroleum Science, 2020, 17 (3): 615- 627.
Li K , Yin X Y , Zong Z Y . Facies-constrained prestack seismic probabilistic inversion driven by rock physics. Science China Earth Sciences, 2020, 63 (6): 822- 840.
Li K , Yin X Y , Zong Z Y , et al. Estimation of porosity, fluid bulk modulus, and stiff-pore volume fraction using a multitrace Bayesian amplitude-variation-with-offset petrophysics inversion in multiporosity reservoirs. Geophysics, 2022, 87 (1): M25- M41.
Lin K , He X L , Zhang B , et al. Porosity estimation based on the rock skeleton general formula and comprehensive pore structure parameter-An application to a tight-sand reservoir. Interpretation, 2022, 10 (1): SA47- SA58.
Liu Q , Dong N , Ji Y X , et al. Direct reservoir property estimation based on prestack seismic inversion. Journal of Petroleum Science and Engineering, 2018, 171: 1475- 1486.
Liu Z F . Key techniques of integrated seismic reservoir characterization for tight oil & gas sands. Progress in Geophysics, 2014, 29 (1): 182- 190.
Liu Z S , Bao Q Z , Liu J Z , et al. A simplified 2D petrophysical model for regular polygon pores. Oil Geophysical Prospecting, 2022, 57 (1): 140- 148.
Luo C , Ba J , Carcione J M , et al. Joint PP and PS Pre-stack seismic inversion for stratified models based on the propagator matrix forward engine. Surveys in Geophysics, 2020, 41 (5): 987- 1028.
Mukerji T , Avseth P , Mavko G , et al. Statistical rock physics: combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization. The Leading Edge, 2001, 20 (3): 313- 319.
Nawaz M A , Curtis A . Rapid discriminative variational Bayesian inversion of geophysical data for the spatial distribution of geological properties. Journal of Geophysical Research: Solid Earth, 2019, 124 (6): 5867- 5887.
Nawaz M A , Curtis A , Shahraeeni M S , et al. Variational Bayesian inversion of seismic attributes jointly for geologic facies and petrophysical rock properties. Geophysics, 2020, 85 (4): MR213- MR233.
Pan X P , Zhang G Z . Bayesian seismic inversion for estimating fluid content and fracture parameters in a gas-saturated fractured porous reservoir. Science China Earth Sciences, 2019, 62 (5): 798- 811.
Pan X P , Liu Z S , Gao D W , et al. Rock-physics-driven nonlinear seismic inversion for petrophysical parameters of reservoir. Chinese Journal of Geophysics, 2024, 67 (3): 1237- 1254.
Rimstad K , Omre H . Skew-Gaussian random fields. Spatial Statistics, 2014, 10: 43- 62.
Sen M K , Stoffa P L . Global Optimization Methods in Geophysical Inversion. 2nd ed Cambridge: Cambridge University Press, 2013
Stolt R H , Weglein A B . Migration and inversion of seismic data. Geophysics, 1985, 50 (12): 2458- 2472.
Teillet T , Fournier F , Zhao L X , et al. Geophysical pore type inversion in carbonate reservoir: Integration of cores, well logs, and seismic data (Yadana field, offshore Myanmar). Geophysics, 2021, 86 (3): B149- B164.
Wang P , Cui Y A , Du X Z . Improved prior construction for probabilistic seismic prediction. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3007005
Yin X Y , Zhang S X . Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation. Geophysics, 2014, 79 (5): R221- R232.
Zhang J J , Yin X Y , Zhang G Z , et al. Prediction method of physical parameters based on linearized rock physics inversion. Petroleum Exploration and Development, 2020, 47 (1): 57- 64.
Zhao J L , Liu J J , Zhang Q H , et al. Overview of geophysical exploration methods and technical of tight sandstone gas reservoirs. Progress in Geophysics, 2017, 32 (2): 840- 848.
Zhao L X , Geng J H , Cheng Q B , et al. Rock physics based probabilistic lithology and fluid prediction in a heterogeneous carbonate reservoir. SEG Technical Program Expanded Abstracts, 2013, 2387- 2391.
Zhao R R , Wang X X , Wang Y , et al. Research of AVO inversion for P-and S-wave inverse quality factors. Progress in Geophysics, 2022, 37 (6): 2518- 2528.
Zhu H Y , Gong D , Zhang B . A multi-scale geology-engineering sweet spot evaluation method for tight sandstone gas reservoirs. Natural Gas Industry, 2023, 43 (6): 76- 86.
金星 , 云燕 , 小奇 . 中国致密砂岩气及在勘探开发上的重要意义. 石油勘探与开发, 2012, 39 (3): 257- 264.
, 世忠 , 江如 , 等. 致密油储层不同尺度、多重介质建模方法研究—以吉木萨尔凹陷芦草沟组上甜点为例. 地球物理学进展, 2017, 32 (2): 618- 625.
爱林 , 云生 , , 等. 中国致密砂岩气开发现状与前景展望. 天然气工业, 2022, 42 (1): 83- 92.
, 兴耀 , 兆云 . 岩石物理驱动的相约束叠前地震概率化反演方法. 中国科学: 地球科学, 2020, 50 (6): 832- 850.
振峰 . 致密砂岩油气藏地震地质研究关键技术. 地球物理学进展, 2014, 29 (1): 182- 190.
致水 , 乾宗 , 俊州 , 等. 一种简化的二维规则多边形孔隙岩石物理模型. 石油地球物理勘探, 2022, 57 (1): 140- 148.
新朋 , 广智 , 兴耀 . 岩石物理驱动的储层裂缝参数与物性参数概率地震反演方法. 地球物理学报, 2018, 61 (2): 683- 696.
新朋 , 志顺 , 大维 , 等. 岩石物理驱动的储层物性参数非线性地震反演方法. 地球物理学报, 2024, 67 (3): 1237- 1254.
佳佳 , 兴耀 , 广智 , 等. 基于线性化岩石物理反演的物性参数预测方法. 石油勘探与开发, 2020, 47 (1): 57- 64.
军龙 , 建建 , 庆辉 , 等. 致密砂岩气藏地球物理勘探方法技术综述. 地球物理学进展, 2017, 32 (2): 840- 848.
容容 , 晓星 , , 等. 纵、横波逆品质因子AVO反演方法研究. 地球物理学进展, 2022, 37 (6): 2518- 2528.
海燕 , , . 致密砂岩气储层多尺度"地质-工程"双甜点评价新方法. 天然气工业, 2023, 43 (6): 76- 86.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5784 KB)

Accesses

Citation

Detail

Sections
Recommended

/