Lithology identification method and research of volcanic rock based on XGBoost algorithm

RanLei ZHAO, LiuShuan YANG, Xiao XU, WenTao MA, JiLiang LI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 646-657.

PDF(7947 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7947 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 646-657. DOI: 10.6038/pg2025II0019

Lithology identification method and research of volcanic rock based on XGBoost algorithm

Author information +
History +

Abstract

The lithology of volcanic rocks is diverse and the log characteristics are complex. Efficient lithology identification can improve the prediction efficiency of high-quality reservoir and reduce the exploration cost, thus laying a foundation for the efficient development of volcanic oil and gas resources in the later period. Aiming at the problems of low identification accuracy and complex model in the process of traditional machine learning lithology identification, this paper takes volcanic rocks in Wangfu fault Depression of Songliao Basin as the research object, comprehensively analyzes the geological characteristics of volcanic rocks reservoir, uses the corrected lithology data as the lithology sample label, and uses principal component analysis to screen out four characteristic logging curves sensitive to volcanic rock lithology identification as input. The lithology identification model is constructed by XGBoost algorithm to identify the lithology of volcanic rocks. After the lithology identification results are given by the model, the identification results are compared with those of random forest, KNN and SVM algorithms. The results show that the accuracy of XGBoost algorithm is 96.13%, while the accuracy of random forest, KNN and SVM algorithm is 93.15%, 91.68% and 91.24%, respectively. XGBoost algorithm can improve the accuracy of identification results by overfitting regularization term control algorithm, and improve the operation efficiency of the algorithm by multithreading parallel operation. The lithology identification model based on this algorithm can provide technical support for solving the problem of efficient lithology identification of volcanic rocks.

Key words

XGBoost / Volcanic rocks / Lithology identification / Regularization / Machine learning

Cite this article

Download Citations
RanLei ZHAO , LiuShuan YANG , Xiao XU , et al . Lithology identification method and research of volcanic rock based on XGBoost algorithm[J]. Progress in Geophysics. 2025, 40(2): 646-657 https://doi.org/10.6038/pg2025II0019

References

An P , Cao D P . Research and application of logging lithology identification based on deep learning. Progress in Geophysics, 2018, 33 (3): 1029- 1034.
Bi L F , Li Z R , Liu H N , et al. Study of semi-supervised learning for lithology prediction based on label propagation. Progress in Geophysics, 2021, 36 (2): 540- 548.
Breiman L . Random forests. Machine Learning, 2001, 45 (1): 5- 32.
Chen T Q, Guestrin C. 2016. XGBoost: a scalable tree boosting system. //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA: ACM, 785-794.
Cover T , Hart P . Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 1967, 13 (1): 21- 27.
Fan Y R , Huang L J , Dai S H . Application of crossplot technique to the determination of lithology composition and fracture identification of igneous rock. Well Logging Technology, 1999, 23 (1): 53- 56. 53-56, 64
Fu G M , Yan J Y , Zhang K , et al. Current status and progress of lithology identification technology. Progress in Geophysics, 2017, 32 (1): 26- 40.
Guan L , Zhong Y L . Retrieval of surface rainfall using random forest algorithm based on FY-4A AGRI observations. Progress in Geophysics, 2023, 38 (5): 1931- 1938.
Han R Y , Wang Z W , Wang W H , et al. Lithology identification of igneous rocks based on XGboost and conventional logging curves, a case study of the eastern depression of Liaohe Basin. Journal of Applied Geophysics, 2021, 195: 104480
Huang A , Cai W Y , Wei X L , et al. Lithology identification of volcanic logging based on improved random forest. Science Technology and Engineering, 2023, 23 (9): 3696- 3704.
Li B , Gatsonis C , Dahabreh I J , et al. Estimating the area under the ROC curve when transporting a prediction model to a target population. Biometrics, 2023, 79 (3): 2382- 2393.
Li X , Fan X Y , Wang Z F , et al. Logging lithology identification method research based on PSO-SVM: a case study of Paleozoic (Pz) reservoir in K oil field, South Turgay Basin, Kazakhstan. Progress in Geophysics, 2022, 37 (2): 617- 626.
Lin P , Xu G L , Xu Z H , et al. Rapid identification of alteration zone based on in-situ Spectral testing of rock mineral in Tunnelling. Journal of Basic Science and Engineering, 2021, 29 (5): 1093- 1107.
Liu K , Zou Z Y , Wang Z Z , et al. Intelligent identification and prediction of lithology of volcanic reservoirs based on machine learning. Special Oil & Gas Reservoirs, 2022, 29 (1): 38- 45.
Liu Z L , Ju X , Zhang Y F , et al. Random forest parameter tuning optimization based on improved random search algorithm. Network Security Technology and Application, 2022, (4): 49- 51.
Lu C H. 2020. Application study of heterogeneous machine learning integration in logging curve recovery and lithology recognition[Master's thesis] (in Chinese). Daqing: Northeast Petroleum University.
Lu J , Lin B T , Shi C , et al. Intelligent lithology identification of sandy conglomerate reservoir in District No. 7 of Karamay Oilfield. Journal of Shenzhen University (Science and Engineering), 2023, 40 (3): 361- 369.
Mou D. 2015. Methods research on logging lithology identification for intermediate/basaltic rocks in Liaohe Basin[Ph. D. thesis] (in Chinese). Changchun: Jilin University.
Mou D , Zhang L C , Xu C L . Comparison of three classical machine learning algorithms for lithology identification of volcanic rocks using well logging data. Journal of Jilin University (Earth Science Edition), 2021, 51 (3): 951- 956.
Sun K . Logging identification method of complex lithology in buried hill based on the improved KNN algorithm. Special Oil & Gas Reservoirs, 2022, 29 (3): 18- 27.
Sun Y S , Huang Y , Liang T , et al. Identification of complex carbonate lithology by logging based on XGBoost algorithm. Lithologic Reservoirs, 2020, 32 (4): 98- 106.
Xu Z H , Ma W , Li S C , et al. Lithology identification: Method, research status and intelligent development trend. Geological Review, 2022, 68 (6): 2290- 2304.
Yang J , Yue Q Y , Jiang R , et al. Characteristics and main controlling factors of volcanic rock reservoirs in Yingcheng formation of Dehui fault depression. Journal of Liaoning Petrochemical University, 2023, 43 (3): 41- 46.
Zhang R , Ma J . Identification and evaluation of logging methods for quartz sandstone gas reservoir in Yulin gas field. Journal of Liaoning Petrochemical University, 2019, 39 (4): 65- 71.
Zhao J , Wang W M , Yang Z D , et al. Lithology identification method of volcanic rocks based on DBN model: an case in Chepaizi area. Progress in Geophysics, 2022, 37 (1): 328- 337.
Zhao M . Rock thin section micro-image graphic technique and its application in reservoir evaluation. Mud Logging Engineering, 2007, (3): 13- 16.
Zhao R L. 2016. Reservoir distribution regulations and evaluation of intermediate volcanic rocks and volcaniclastic sedimentary rocks in Southern Songliao Basin[Ph. D. thesis] (in Chinese). Changchun: Jilin University.
Zhao T T , Zhang C L , Zhang C Y , et al. Application of KNN classification model based on fuzzy entropy in lithology recognition. Computer Engineering and Applications, 2018, 54 (24): 260- 265.
Zhou X Q , Zhang Z S , Zhang C M , et al. Complex lithologic identification based on rough set-random forest algorism. Petroleum Geology and Oilfield Development in Daqing, 2017, 36 (6): 127- 133.
Zhou Z H . Machine Learning. Beijing: Tsinghua University Press, 2016
Zhu Y , Yu Y X , Wang S , et al. Investigation of igneous rock reservoir petrophysical parameter model and oil reservoir identification standard: A case study on the Carboniferous samples of the Chepaizi Uplift in the Junggar Basin. Oil & Gas Geology, 2018, 39 (1): 119- 128.
, 丹平 . 基于深度学习的测井岩性识别方法研究与应用. 地球物理学进展, 2018, 33 (3): 1029- 1034.
丽飞 , 泽瑞 , 海宁 , 等. 基于标签传播的岩性预测半监督学习算法研究. 地球物理学进展, 2021, 36 (2): 540- 548.
宜仁 , 隆基 , 诗华 . 交会图技术在火山岩岩性与裂缝识别中的应用. 测井技术, 1999, 23 (1): 53- 56. 53-56, 64
光明 , 加永 , , 等. 岩性识别技术现状与进展. 地球物理学进展, 2017, 32 (1): 26- 40.
, 宇璐 . 基于FY-4A AGRI观测用随机森林算法反演地面雨量. 地球物理学进展, 2023, 38 (5): 1931- 1938.
, 文渊 , 新路 , 等. 基于改进随机森林的火山岩测井岩性识别. 科学技术与工程, 2023, 23 (9): 3696- 3704.
, 翔宇 , 兆峰 , 等. 基于PSO-SVM的测井岩性识别方法研究——以南图尔盖盆地K油田古生界(Pz)储层为例. 地球物理学进展, 2022, 37 (2): 617- 626.
, 广璐 , 振浩 , 等. 基于岩石矿物光谱原位测试的隧道内蚀变带快速识别方法. 应用基础与工程科学学报, 2021, 29 (5): 1093- 1107.
, 正银 , 志章 , 等. 基于机器学习的火山岩岩性智能识别及预测. 特种油气藏, 2022, 29 (1): 38- 45.
紫亮 , , 永芳 , 等. 基于改进随机搜索算法的随机森林调参优化. 网络安全技术与应用, 2022, (4): 49- 51.
路成辉. 2020. 异构机器学习集成在测井曲线复原和岩性识别中的应用研究[硕士论文]. 大庆: 东北石油大学.
, 伯韬 , , 等. 克拉玛依油田七区砂砾岩油藏智能岩性识别. 深圳大学学报(理工版), 2023, 40 (3): 361- 369.
牟丹. 2015. 辽河盆地中基性火成岩测井岩性识别方法研究[博士论文]. 长春: 吉林大学.
, 丽春 , 长玲 . 3种经典机器学习算法在火山岩测井岩性识别中的对比. 吉林大学学报(地球科学版), 2021, 51 (3): 951- 956.
岿 . 基于改进KNN算法的潜山复杂岩性测井识别方法. 特种油气藏, 2022, 29 (3): 18- 27.
予舒 , , , 等. 基于XGBoost算法的复杂碳酸盐岩岩性测井识别. 岩性油气藏, 2020, 32 (4): 98- 106.
振浩 , , 术才 , 等. 岩性识别: 方法、现状及智能化发展趋势. 地质论评, 2022, 68 (6): 2290- 2304.
, 庆友 , , 等. 德惠断陷营城组火山岩储层特征及主控因素. 辽宁石油化工大学学报, 2023, 43 (3): 41- 46.
, . 榆林气田石英砂岩气层的测井方法识别评价研究. 辽宁石油化工大学学报, 2019, 39 (4): 65- 71.
, 伟明 , 志冬 , 等. 基于DBN模型的火山岩岩性识别方法——以车排子地区为例. 地球物理学进展, 2022, 37 (1): 328- 337.
. 岩石薄片显微图像技术在储集层评价中的应用. 录井工程, 2007, (3): 13- 16.
赵然磊. 2016. 松辽盆地南部中性火山岩和沉火山碎屑岩储层发育规律与评价[博士论文]. 长春: 吉林大学.
彤彤 , 春雷 , 春雨 , 等. 基于模糊熵的KNN分类模型在岩性识别中的应用. 计算机工程与应用, 2018, 54 (24): 260- 265.
雪晴 , 占松 , 超谟 , 等. 基于粗糙集——随机森林算法的复杂岩性识别. 大庆石油地质与开发, 2017, 36 (6): 127- 133.
志华 . 机器学习. 北京: 清华大学出版社, 2016
, 一欣 , , 等. 火成岩储层物性参数模型及油层判识——以准噶尔盆地车排子凸起石炭系为例. 石油与天然气地质, 2018, 39 (1): 119- 128.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(7947 KB)

Accesses

Citation

Detail

Sections
Recommended

/