Study on integrated evaluation system of tight oil geological engineering: a case study of Chang 8 reservoir in western Ganquan area, Ordos Basin

LianRu YANG, JinFeng LI, JiJi SUN, Qian WANG, YanJun WU, YinHui REN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 166-175.

PDF(4982 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4982 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 166-175. DOI: 10.6038/pg2025II0024

Study on integrated evaluation system of tight oil geological engineering: a case study of Chang 8 reservoir in western Ganquan area, Ordos Basin

Author information +
History +

Abstract

The integration of geological engineering is one of the key technologies for efficient development of tight oil, and plays a very important role in the development of tight oil in Chang 8 member of the lower Yanchang Formation in West Ganquan. However, the evaluation criteria for geological and engineering sweet spots have not yet been formed in this block, which restricts the deployment of future oil and gas exploration and development plans. Therefore, using logging data to identify reservoirs in Chang 8 member of the study area, the evaluation index system of geological sweet spot is formed in terms of source rock, diagenetic facies and reservoir distribution characteristics. From brittleness index, rock stress and strain test, rock tensile fracture test, the evaluation index of engineering sweet area is established. The results show that: (1) The identification accuracy of reservoir fluid properties of Chang 8 member in the study area can reach 90% by differential analysis and fluid sensitive parameter method; (2) An evaluation index of geological sweet spot area of tight oil reservoir is established based on sand thickness, reservoir thickness, sedimentary facies, porosity, diagenetic facies and TOC*H parameters; (3) On the basis of petrophysical experiments and actual construction results, the evaluation indexes of the sweet spot of Chang 8 tight reservoir engineering in the study area are established from the aspects of petrophysical parameters and the optimization of differentiated fine-cut volumetric fracturing process. Under the constraint of geological sweet spot and engineering sweet spot, the recovery rate of Class Ⅰ reservoir can be increased from 5.3% to 17.3%, Class Ⅱ reservoir can only be increased from 4.86% to 8.19%, and Class Ⅲ reservoir can only be increased from 2.81% to 4.95% by optimizing fracturing process parameters.

Key words

Tight oil / Geology-engineering integration / Evaluation index / Western Ganquan area

Cite this article

Download Citations
LianRu YANG , JinFeng LI , JiJi SUN , et al . Study on integrated evaluation system of tight oil geological engineering: a case study of Chang 8 reservoir in western Ganquan area, Ordos Basin[J]. Progress in Geophysics. 2025, 40(1): 166-175 https://doi.org/10.6038/pg2025II0024

References

Bai L H , Liu B , Chi Y A , et al. 2D NMR studies of fluids in organic-rich shale from the Qingshankou Formation, Songliao Basin. Oil & Gas Geology, 2021, 42 (6): 1389- 1400.
Chen Y G , He Y H , Wang C , et al. Genesis and accumulation patterns of unconventional oil reservoir in Member 8 of Triassic Yanchang Formation: a case study of the western Ganquan area, southeastern Ordos Basin. Acta Petrolei Sinica, 2021, 42 (10): 1270- 1286.
Fan J W , Yuan Y , Li S H , et al. Geology-engineering integrated simulation technology of deep tight oil reservoir in Tarim Basin. Fault-Block Oil & Gas Field, 2022, 29 (2): 194- 198.
Feng Z B , Ma F J , Chen B , et al. Geology-engineering integration solution for tight oil exploration of Chang-7 member, Ordos Basin-focusing on scientific well spacing and efficient drilling. China Petroleum Exploration, 2020, 25 (2): 155- 168.
Guo J Z , Guo X J , Zhao M , et al. Conventional logging evaluation method of brittleness index of tight sandstone based on multi-mineral model: a case study of Chang 7 member in Tongchuan area, Ordos basin. Progress in Geophysics, 2023, 38 (4): 1590- 1602.
Jin C Z , He J , Lin Q X , et al. Fracturing stimulation based on geology-engineering integration to tight oil reservoirs in Block Fang 198-133, northern Songliao Basin. China Petroleum Exploration, 2019, 24 (2): 218- 225.
Lei Q , Weng D W , Guan B S , et al. A novel approach of tight oil reservoirs stimulation based on fracture controlling optimization and design. Petroleum Exploration and Development, 2020, 47 (3): 592- 599.
Li J F , Yang L R , Gong J S , et al. Technology optimization and field test of stimulated reservoir volume with differential subdivision cutting for horizontal wells in tight oil reservoirs in Xiasiwan oilfield. Sino-Global Energy, 2022, 27 (10): 37- 43.
Liu W B , Xu X Y , Chen S , et al. Key technology and engineering demonstration of geology-engineering integration efficient exploration of continental shale oil in Songliao Basin. Earth Science, 2023, 48 (1): 173- 190.
Mu L J , Bai J , Qi Y , et al. Geological engineering integrated fracturing technology for Qingcheng interlayer shale oil. Petroleum Drilling Techniques, 2023, 51 (5): 33- 41.
Shi Y J , Cai W Y , Liu G Q , et al. Full diameter core 2D NMR spectrum characteristics of pore fluid in shale oil reservoir and evaluation method. China Petroleum Exploration, 2023, 28 (3): 132- 144.
Tian H , Yan W L , Wu H L , Yan X H , et al. Logging quantitative identification method for lithofacies of continental shale oil. Progress in Geophysics, 2023, 38 (5): 2122- 2134.
Wu Q , Hu W R , Li X . The phenomenon of "alienation" of geology-engineering integration in exploration and development of complicated oil and gas reservoirs, and related thoughts and suggestions. China Petroleum Exploration, 2018, 23 (2): 1- 5.
Xie G Q , Lin H , Liu S D , et al. Innovation and practice of geology and engineering integrated fracturing technology for shale oil in Yingxiongling area in the western Qaidam Basin. China Petroleum Exploration, 2023, 28 (4): 105- 116.
Yang Z , Tang Z X , Chen X , et al. "Exploring oil inside source kitchen": main types of tight oil and progress of geology-engineering integration. China Petroleum Exploration, 2020, 25 (2): 73- 83.
Yuan Y , Du K F , Ge Y J , et al. Geochemistry of hydrocarbon source rocks of Chang7 in Ganquan-Fuxian area, Ordos Basin. Lithologic Reservoirs, 2018, 30 (1): 39- 45.
Zhang X J , Zhang Y . Reservoir prediction through cross-validation based on support vector machine. Geophysical Prospecting for Petroleum, 2018, 57 (4): 597- 600.
Zhong G R , Li Y J , Zhang G Q , et al. Determination of lower limit of effective oil filling property of Chang 63 member tight sandstone reservoir in central Ordos Basin. Progress in Geophysics, 2023, 38 (6): 2663- 2673.
Zhu B Q , Chen S J , Bai Y J , et al. Geochemical characteristics and source of crude oil in Chang 8 member of Yanchang Formation, Ganquan Area, Ordos Basin. Geoscience, 2022, 36 (2): 742- 754.
龙辉 , , 亚奥 , 等. 二维核磁共振技术表征页岩所含流体特征的应用—以松辽盆地青山口组富有机质页岩为例. 石油与天然气地质, 2021, 42 (6): 1389- 1400.
义国 , 永红 , , 等. 鄂尔多斯盆地三叠系延长组8段非常规油藏成因与成藏模式—以盆地东南部甘泉西区为例. 石油学报, 2021, 42 (10): 1270- 1286.
家伟 , , 绍华 , 等. 塔里木盆地深层致密油藏地质工程一体化模拟技术. 断块油气田, 2022, 29 (2): 194- 198.
张斌 , 福建 , , 等. 鄂尔多斯盆地延长组7段致密油地质工程一体化解决方案—针对科学布井和高效钻井. 中国石油勘探, 2020, 25 (2): 155- 168.
京哲 , 小军 , , 等. 基于多矿物模型的致密砂岩脆性指数常规测井评价方法——以鄂尔多斯盆地桐川地区长7段为例. 地球物理学进展, 2023, 38 (4): 1590- 1602.
成志 , , 庆祥 , 等. 松辽盆地北部芳198-133区块致密油地质工程一体化压裂实践. 中国石油勘探, 2019, 24 (2): 218- 225.
, 定为 , 保山 , 等. 基于缝控压裂优化设计的致密油储集层改造方法. 石油勘探与开发, 2020, 47 (3): 592- 599.
锦锋 , 连如 , 嘉顺 , 等. 下寺湾油田致密油水平井差异化细切割体积压裂工艺优化及矿场试验. 中外能源, 2022, 27 (10): 37- 43.
卫彬 , 兴友 , , 等. 松辽盆地陆相页岩油地质工程一体化高效勘查关键技术与工程示范. 地球科学, 2023, 48 (1): 173- 190.
立俊 , , , 等. 庆城夹层型页岩油地质工程一体化压裂技术. 石油钻探技术, 2023, 51 (5): 33- 41.
玉江 , 文渊 , 国强 , 等. 页岩油储层孔隙流体的全直径岩心二维核磁共振图谱特征及评价方法. 中国石油勘探, 2023, 28 (3): 132- 144.
, 伟林 , 宏亮 , 等. 一种陆相页岩油岩相测井定量识别方法. 地球物理学进展, 2023, 38 (5): 2122- 2134.
, 文瑞 , . 地质工程一体化在复杂油气藏效益勘探开发中存在的"异化"现象及思考建议. 中国石油勘探, 2018, 23 (2): 1- 5.
贵琪 , , 世铎 , 等. 柴达木盆地西部英雄岭页岩油地质工程一体化压裂技术创新与实践. 中国石油勘探, 2023, 28 (4): 105- 116.
, 振兴 , , 等. "进源找油": 致密油主要类型及地质工程一体化进展. 中国石油勘探, 2020, 25 (2): 73- 83.
, 克锋 , 云锦 , 等. 鄂尔多斯盆地甘泉—富县地区长7烃源岩地球化学特征. 岩性油气藏, 2018, 30 (1): 39- 45.
向君 , . 基于支持向量机的交互检验储层预测. 石油物探, 2018, 57 (4): 597- 600.
高润 , 亚军 , 国强 , 等. 鄂尔多斯盆地中部长63段致密砂岩储层石油有效充注物性下限. 地球物理学进展, 2023, 38 (6): 2663- 2673.
必清 , 世加 , 艳军 , 等. 鄂尔多斯盆地甘泉地区延长组长8段原油地球化学特征及来源. 现代地质, 2022, 36 (2): 742- 754.

感谢延安大学石油工程与环境工程学院在论文完成中提供分析测试条件, 感谢审稿专家提出的修改意见.

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(4982 KB)

Accesses

Citation

Detail

Sections
Recommended

/