Heat extraction power of hot dry rock containing a single fracture and its influencing factors

LuanLuan XUE, JiaLin CHEN, LinWei WANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1394-1404.

PDF(4775 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4775 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1394-1404. DOI: 10.6038/pg2025II0026

Heat extraction power of hot dry rock containing a single fracture and its influencing factors

Author information +
History +

Abstract

Efficient heat exchange of fluids within artificial thermal reservoir is the fundamental goal for the development of hot dry rock, and it is crucial to reasonably assess the heat extraction ratio of hot dry rock reservoir containing a single fracture. Based on the relationship between fluid output temperature and thermal power generation, the conventional heat extraction ratio is optimized, and the modified heat extraction ratio, i.e., heat extraction power, which considers the effects of both output temperature and power generation, is proposed. A numerical heat transfer model for fluid flowing in a single fracture using a local thermal non-equilibrium model is developed to investigate the effects of reservoir size, fracture aperture and reservoir running time of hot dry rock on the heat extraction power, and the sensitivity hierarchy is classified. The results show that, in the process of reservoir seepage heat transfer, the heat extraction power is mainly controlled by the mass flow rate, and the peak value, i.e., the optimal heat extraction power, appears with the change of the mass flow rate of the fissure flow; when the reservoir size is the same, the fracture aperture has almost no effect on the heat extraction power, the optimal heat extraction power, and the output temperature, etc., but the heat extraction power and the optimal heat extraction power will be declined with the increase of the running time. Based on the modified Morris Method, the sensitivity of reservoir size, fracture aperture and running time to the optimal heat extraction power was analyzed, and it was found that the reservoir size was highly sensitive and positively correlated with the optimal heat extraction power, the running time was generally sensitive and negatively correlated, and the fracture aperture was not sensitive. The research results can provide a reference for the evaluation of heat extraction performance of hot dry rock.

Key words

Fracture / Seepage / Heat transfer / Heat extraction power / Hot dry rock

Cite this article

Download Citations
LuanLuan XUE , JiaLin CHEN , LinWei WANG. Heat extraction power of hot dry rock containing a single fracture and its influencing factors[J]. Progress in Geophysics. 2025, 40(4): 1394-1404 https://doi.org/10.6038/pg2025II0026

References

Abbasi M , Khazali N , Sharifi M . Analytical model for convection-conduction heat transfer during water injection in fractured geothermal reservoirs with variable rock matrix block size. Geothermics, 2017, 69: 1- 14.
Chen J L , Jiang F M . A numerical study on heat extraction performance of enhanced geothermal systems. Renewable Energy Resources, 2013, 31 (12): 111- 117. 111-117, 121
Chen W P , Tu H Z , Peng C , et al. Comment on sensitivity analysis methods for environmental models. Environmental Science, 2017, 38 (11): 4889- 4896.
Fox D B , Sutter D , Beckers K F , et al. Sustainable heat farming: Modeling extraction and recovery in discretely fractured geothermal reservoirs. Geothermics, 2013, 46: 42- 54.
Francos A , Elorza F J , Bouraoui F , et al. Sensitivity analysis of distributed environmental simulation models: understanding the model behaviour in hydrological studies at the catchment scale. Reliability Engineering & System Safety, 2003, 79 (2): 205- 218.
Gong F C , Guo T K , Sun W , et al. Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW). Renewable Energy, 2020, 151: 1339- 1351.
Guo B , Fu P C , Hao Y , et al. Thermal drawdown-induced flow channeling in a single fracture in EGS. Geothermics, 2016, 61: 46- 62.
Guo Q H . Environmental effects of harmful constituents derived from geothermal systems and their treatments. Acta Geologica Sinica, 2022, 96 (5): 1767- 1773.
Hu J , Su Z , Wu N Y , et al. Analysis on temperature fields of thermal-hydraulic coupled fluid and rock in enhanced geothermal system. Progress in Geophysics, 2014, 29 (3): 1391- 1398.
Huang Y B , Zhang Y J , Hu Z J , et al. Economic analysis of heating for an enhanced geothermal system based on a simplified model in Yitong Basin, China. Energy Science & Engineering, 2019, 7 (6): 2658- 2674.
Liu C W , Chen P Y , Li K W . A 500 W low-temperature thermoelectric generator: Design and experimental study. International Journal of Hydrogen Energy, 2014, 39 (28): 15497- 15505.
Liu G , Zhou C W , Rao Z H , et al. Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems. Renewable Energy, 2021, 171: 492- 504.
Liu Z B , Wu M . Thermal properties of Kangding granite and evaluation of thermal extraction potential in deep reservoirs. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (8): 1821- 1831.
Morris M D . Factorial sampling plans for preliminary computational experiments. Technometrics, 1991, 33 (2): 161- 174.
Nield D A , Bejan A . Convection in Porous Media. New York: Springer, 2006
Patterson J R , Cardiff M , Feigl K L . Optimizing geothermal production in fractured rock reservoirs under uncertainty. Geothermics, 2020, 88: 101906
Pruess K . Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics, 2006, 35 (4): 351- 367.
Shan D D , Yan T , Li W , et al. Numerical simulation and analysis of thermal-hydraulic coupling in a single-fracture thermal reservoir. Contemporary Chemical Industry, 2020, 49 (4): 716- 719. 716-719, 723
Shan D D , Li W , Yan T , et al. Evaluation on heat extraction performance of enhanced geothermal system: A case study of hot-dry rock reservoirs in the Qiabuqia area of the Gonghe Basin. Natural Gas Industry, 2022, 42 (10): 150- 160.
Shan D D , Li W , Wang Y , et al. Effect of wellbore layout and fracture distribution characteristics on heat recovery performance of enhanced geothermal system. Progress in Geophysics, 2023, 38 (2): 600- 611.
Shu B , Wang Y M , Zhu R J , et al. Experimental study of the heat transfer characteristics of single geothermal fracture at different reservoir temperature and in situ stress conditions. Applied Thermal Engineering, 2022, 207: 118195
Song X Z , Shi Y , Li G S , et al. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells. Applied Energy, 2018, 218: 325- 337.
Tang Y J , Ma T S , Chen L L , et al. Evaluation on the heat extraction efficiency of hot dry rock reservoirs based on two-dimensional fracture network numerical simulation. Natural Gas Industry, 2022, 42 (4): 94- 106.
Wang Y N , Lu C , Wang G L . Influencing mechanism of rock thermal resistance on convective heat transfer of fracture. Coal Geology & Exploration, 2023, 51 (3): 113- 122.
Xiao P , Yan F F , Dou B , et al. Numerical simulation on the heat transfer process of parallel multi-fractures in enhanced geothermal system horizontal well. Renewable Energy Resources, 2019, 37 (7): 1091- 1099.
Xue L L . A composite element model for coupled seepage-heat transfer of fractured rock mass. Rock and Soil Mechanics, 2016, 37 (1): 263- 268. 263-268, 278
Zeng Y C , Wu N Y , Su Z , et al. Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field. Energy, 2013, 63: 268- 282.
Zhai H Z , Wei G L , Jin G R , et al. Theoretical numerical simulation of the effect of fracture distribution characteristics on EGS heat extraction. Progress in Geophysics, 2020, 35 (2): 480- 487.
Zhang B , Qu Z Q , Guo T K , et al. Study on heat transfer characteristics and global sensitivity analysis of a rough single fracture. Progress in Geophysics, 2022, 37 (4): 1520- 1527.
Zhang C , Hu S B , Huang R H , et al. Research status of heat source mechanism of the hot dry rock geothermal resources and its implications to the studies of genetic mechanism. Progress in Geophysics, 2022, 37 (5): 1907- 1919.
Zhang H W , Wan Z J , Zhao Y X , et al. Shear induced seepage and heat transfer evolution in a single-fractured hot-dry-rock. CMES-Computer Modeling in Engineering & Sciences, 2020, 126 (2): 443- 455.
Zhang J , Xie J X . Design and productivity evaluation of multi-lateral well enhanced geothermal development system. Natural Gas Industry, 2021, 41 (3): 179- 188.
Zhu J L , Zhang G W , Li J , et al. Analytical solution and sensitivity analysis of fluid-solid heat transfer coefficient in fracture channel. Acta Energiae Solaris Sinica, 2016, 37 (8): 2019- 2025.
继良 , 方明 . 增强型地热系统热开采性能的数值模拟分析. 可再生能源, 2013, 31 (12): 111- 117. 111-117, 121
卫平 , 宏志 , , 等. 环境模型中敏感性分析方法评述. 环境科学, 2017, 38 (11): 4889- 4896.
清海 . 地热系统来源有害组分的环境效应及其处理. 地质学报, 2022, 96 (5): 1767- 1773.
, , 能友 , 等. 增强型地热系统热流耦合水岩温度场分析. 地球物理学进展, 2014, 29 (3): 1391- 1398.
造保 , . 康定花岗岩热物性参数与深部储层采热潜力评估. 岩石力学与工程学报, 2023, 42 (8): 1821- 1831.
丹丹 , , , 等. 单裂隙热储热流耦合数值模拟分析. 当代化工, 2020, 49 (4): 716- 719. 716-719, 723
丹丹 , , , 等. 增强型地热系统采热性能评价——以共和盆地恰卜恰地区干热岩储层为例. 天然气工业, 2022, 42 (10): 150- 160.
丹丹 , , , 等. 井筒布置及裂隙分布特征对增强型地热系统采热性能的影响. 地球物理学进展, 2023, 38 (2): 600- 611.
宜家 , 天寿 , 力力 , 等. 基于二维裂缝网络数值模拟的干热岩储层热采效率评价. 天然气工业, 2022, 42 (4): 94- 106.
亚宁 , , 贵玲 . 岩石导热热阻对裂隙对流换热的影响机制. 煤田地质与勘探, 2023, 51 (3): 113- 22.
, 飞飞 , , 等. 增强型地热系统水平井平行多裂隙换热过程数值模拟. 可再生能源, 2019, 37 (7): 1091- 1099.
娈鸾 . 裂隙岩体渗流-传热耦合的复合单元模型. 岩土力学, 2016, 37 (1): 263- 268. 263-268, 278
海珍 , 国灵 , 光荣 , 等. 裂隙展布特征对EGS采热影响的理论数值模拟研究. 地球物理学进展, 2020, 35 (2): 480- 487.
, 占庆 , 天魁 , 等. 粗糙单裂隙换热特征及全局灵敏度分析研究. 地球物理学进展, 2022, 37 (4): 1520- 1527.
, 圣标 , 荣华 , 等. 干热岩地热资源热源机制研究现状及其对成因机制研究的启示. 地球物理学进展, 2022, 37 (5): 1907- 1919.
, 经轩 . 多分支井增强型地热开发系统设计及产能评价. 天然气工业, 2021, 41 (3): 179- 188.
家玲 , 国伟 , , 等. 裂隙通道内流固换热系数解析解及敏感性分析. 太阳能学报, 2016, 37 (8): 2019- 2025.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(4775 KB)

Accesses

Citation

Detail

Sections
Recommended

/