Time-lapse gravity monitoring technology and prospects for carbon dioxide geological storage

YueHua ZHANG, Yan LIU, QingTian LÜ, ZhaoXi CHEN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 495-510.

PDF(2497 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2497 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 495-510. DOI: 10.6038/pg2025II0028

Time-lapse gravity monitoring technology and prospects for carbon dioxide geological storage

Author information +
History +

Abstract

Global warming has prompted countries to reach a political consensus and take a series of actions to actively address climate change. Carbon dioxide geological storage injects the captured carbon dioxide into the storage site for long-term storage. The injected carbon dioxide may leak through potential pathways such as abandoned wellbores and faults due to a combination of pressure and itsbuoyancy. The change of physical parameters such as reservoir density before and after carbon dioxide injection provides a theoretical basis for gravity monitoring technology. The inversion of carbon dioxide plume distribution using gravity data aids in the analysis of fluid spatial movement and distribution over time. This paper focuses on the development and application potential of time-lapse gravity monitoring methods in the field of carbon dioxide geological storage from two perspectives: academic research and industrial applications. With the constant improvement of gravity observation instruments, the continuous innovation of data acquisition and processing technology, and the continuous progress of inversion interpretation methods, the application prospects for the time-lapse gravity monitoring method are also broader. At present, the development of time-lapse gravity monitoring needs to seize the opportunity of the ongoing expansion of the quantity and scale of carbon dioxide geological storage projects. Effective information on the distribution of carbon dioxide underground can be obtained by comparing the density determined by surface and borehole gravity before and after storage.The comprehensive use of various geophysical methods is the development trend of monitoring carbon dioxide geological storage projects in the future, taking into account the real needs of the project.

Key words

Carbon dioxide geological storage / Time-lapse gravity / Gravity monitoring

Cite this article

Download Citations
YueHua ZHANG , Yan LIU , QingTian LÜ , et al. Time-lapse gravity monitoring technology and prospects for carbon dioxide geological storage[J]. Progress in Geophysics. 2025, 40(2): 495-510 https://doi.org/10.6038/pg2025II0028

References

Alnes H , Eiken O , Stenvold T . Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics, 2008, 73 (6): WA155- WA161.
Alnes H , Eiken O , Nooner S , et al. Results from Sleipner gravity monitoring: Updated density and temperature distribution of the CO2 plume. Energy Procedia, 2011, 4: 5504- 5511.
Alyousuf T, Li Y G, Krahenbuhl R. 2022. Machine learning inversion of time-lapse three-axis borehole gravity data for CO2 monitoring. //Second International Meeting for Applied Geoscience & Energy. Houston, Texas: Society of Exploration Geophysicists, 3099-3103, doi: 10.1190/image2022-3745388.1.
Appriou D , Bonneville A , Zhou Q L , et al. Time-lapse gravity monitoring of CO2 migration based on numerical modeling of a faulted storage complex. International Journal of Greenhouse Gas Control, 2020, 95: 102956
Balza A , Li Y G . Integrating time-lapse gravity, production, and geologic structure data in a gas reservoir study. Interpretation, 2020, 8 (4): SS129- SS143.
Battaglia M , Gottsmann J , Carbone D , et al. 4D volcano gravimetry. Geophysics, 2008, 73 (6): WA3- WA18.
Battaglia M , Calahorrano-Di Patre A , Flinders A F . gTOOLS, an open-source MATLAB program for processing high precision, relative gravity data for time-lapse gravity monitoring. Computers & Geosciences, 2022, 160: 105028
Beaton M L , Mashhadi N , Dominato K R , et al. Monitoring CO2 injection and retention in steam-assisted gravity drainage (SAGD) operations. Journal of Petroleum Science and Engineering, 2022, 218: 111050
Black A, Hare J, Macqueen J. 2016. Borehole gravity monitoring in the Aquistore CO2 sequestration well. //SEG Technical Program Expanded Abstracts 2016. Dallas, Texas: Society of Exploration Geophysicists, 768-772, doi: 10.1190/segam2016-13953618.1.
Bonneville A , Black A J , Hare J L , et al. Time-lapse borehole gravity imaging of CO2 injection and withdrawal in a closed carbonate reef. Geophysics, 2021, 86 (6): G113- G132.
Bourne S , Crouch S , Smith M . A risk-based framework for measurement, monitoring and verification of the Quest CCS Project, Alberta, Canada. International Journal of Greenhouse Gas Control, 2014, 26: 109- 126.
Cai Y , Wang Z L , Liang Y , et al. Application of DTCWT in time-lapse microgravity monitoring: a case study from SAGD area of Liaohe Oilfield. Progress in Geophysics, 2021, 36 (2): 549- 558.
Capriotti J , Li Y G . Inversion for permeability distribution from time-lapse gravity data. Geophysics, 2015, 80 (2): WA69- WA83.
Carbone D , Antoni-Micollier L , Hammond G , et al. The NEWTON-g gravity imager: toward new paradigms for terrain gravimetry. Frontiers in Earth Science, 2020, 8: 573396
Chen S , Zhuang J C , Li X Y , et al. Bayesian approach for network adjustment for gravity survey campaign: methodology and model test. Journal of Geodesy, 2019, 93 (5): 681- 700.
Chen Z X , Meng X H , Guo L H , et al. Three-dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU. Chinese Journal of Geophysics, 2012, 55 (12): 4069- 4077.
Cho Y , Cao Y , Zagayevskiy Y , et al. Kriging-based monitoring of reservoir gas saturation distribution using time-lapse multicomponent borehole gravity measurements: Case study, Hastings Field. Journal of Petroleum Science and Engineering, 2020, 190: 107054
Cogbill A H, Ferguson J F, Keating E H, et al. 2006. Use of absolute gravity measurements to monitor groundwater in the Española Basin, New Mexico. //19th Symposium on the Application of Geophysics to Engineering and Environmental Problems. Seattle: Environmental and Engineering Geophysical Society, 755-766, doi: 10.4133/1.2923716.
Davis K , Li Y G , Batzle M . Time-lapse gravity monitoring: A systematic 4D approach with application to aquifer storage and recovery. Geophysics, 2008, 73 (6): WA61- WA69.
Dodds K , Krahenbuhl R , Reitz A , et al. Evaluating time-lapse borehole gravity for CO2 plume detection at SECARB Cranfield. International Journal of Greenhouse Gas Control, 2013, 18: 421- 429.
Dupuy B , Romdhane A , Eliasson P , et al. Combined geophysical and rock physics workflow for quantitative CO2 monitoring. International Journal of Greenhouse Gas Control, 2021, 106: 103217
Eiken O , Stenvold T , Zumberge M , et al. Gravimetric monitoring of gas production from the Troll field. Geophysics, 2008, 73 (6): WA149- WA154.
Elliott E J , Braun A . Gravity monitoring of 4D fluid migration in SAGD reservoirs-Forward modelling. CSEG Recorder, 2016, 41 (1): 16- 21.
Esposito A , Benson S M . Evaluation and development of options for remediation of CO2 leakage into groundwater aquifers from geologic carbon storage. International Journal of Greenhouse Gas Control, 2012, 7: 62- 73.
Fang F Z , Gu C Y . Measurement principle and development status of high precision gravimeters. Chinese Journal of Scientific Instrument, 2017, 38 (8): 1830- 1840.
Fibbi G , Del Soldato M , Fanti R . Review of the monitoring applications involved in the underground storage of natural gas and CO2. Energies, 2023, 16 (1): 12
Furre A K , Eiken O , Alnes H , et al. 20 Years of Monitoring CO2-injection at Sleipner. Energy Procedia, 2017, 114: 3916- 3926.
Gasperikova E , Hoversten G M . Gravity monitoring of CO2 movement during sequestration: Model studies. Geophysics, 2008, 73 (6): WA105- WA112.
Gasperikova E , Li Y G . Time-lapse electromagnetic and gravity methods in carbon storage monitoring. The Leading Edge, 2021, 40 (6): 442- 446.
Gasperikova E , Appriou D , Bonneville A , et al. Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes. International Journal of Greenhouse Gas Control, 2022, 114: 103585
Gettings P , Chapman D S , Allis R . Techniques, analysis, and noise in a Salt Lake Valley 4D gravity experiment. Geophysics, 2008, 73 (6): WA71- WA82.
Goto H , Sugihara M , Ikeda H , et al. Continuous gravity observation with a superconducting gravimeter at the Tomakomai CCS demonstration site, Japan: applicability to ground-based monitoring of offshore CO2 geological storage. Greenhouse Gases: Science and Technology, 2019, 9 (5): 934- 947.
Gouveia W P , Johnston D H , Solberg A , et al. Jotun 4D: Characterization of fluid contact movement from time-lapse seismic and production logging tool data. The Leading Edge, 2004, 23 (11): 1187- 1194.
Gunawan I , Wahyudi E J , Alawiyah S , et al. Annotation of using borehole time-lapse gravity by genetic algorithm inversion for subsurface modeling. Journal of Engineering and Technological Sciences, 2020, 52 (2): 153- 165.
Hinderer J, Hector B, Mémin A, et al. 2016. Hybrid gravimetry as a tool to monitor surface and underground mass changes. //Freymueller J T, Sánchez L eds. International Association of Geodesy Symposia. Cham: Springer International Publishing, 123-130, doi: 10.1007/1345_2016_253.
Huang J P , Wang Q H , Xu S X , et al. Study on the change of primary term coefficient of CG-5 gravimeter and its effect on earthquake monitoring data. Journal of Seismological Research, 2020, 43 (1): 101- 108.
Huang J P , Du J Y , Cao Y , et al. The estimation method of the zero drift of the relative gravimeter in high-precision time-varying gravity observation in Yunnan. Journal of Seismological Research, 2023, 46 (4): 511- 520.
Huang R . Deep learning inversion of large-scale gravity data. Wuhan: China University of Geosciences, 2022
Jacob T , Rohmer J , Manceau J C . Using surface and borehole time-lapse gravity to monitor CO2 in saline aquifers: a numerical feasibility study. Greenhouse Gases: Science and Technology, 2016, 6 (1): 34- 54.
Jafargandomi A , Curtis A . Detectability of petrophysical properties of subsurface CO2-saturated aquifer reservoirs using surface geophysical methods. The Leading Edge, 2011, 30 (10): 1112- 1121.
Jia J G . Technology and application study on precision gravity measurements. Wuhan: Wuhan University, 2019
Jung Y , Zhou Q L , Birkholzer J T . Early detection of brine and CO2 leakage through abandoned wells using pressure and surface-deformation monitoring data: Concept and demonstration. Advances in Water Resources, 2013, 62: 555- 569.
Kabirzadeh H , Kim J W , Sideris M G , et al. Coupled inverse modelling of tight CO2 reservoirs using gravity and ground deformation data. Geophysical Journal International, 2019, 216 (1): 274- 286.
Kao R , Kabirzadeh H , Kim J W , et al. Detecting small gravity change in field measurement: simulations and experiments of the superconducting gravimeter—iGrav. Journal of Geophysics and Engineering, 2014, 11 (4): 045004
Katterbauer K, Al Shehri A, Al Qasim A. 2022. A quantum gravity AI framework for CO2 storage monitoring and optimization. //ADIPEC. Abu Dhabi, UAE: SPE, doi: 10.2118/210841-MS.
Kim J W , Neumeyer J , Kao R , et al. Mass balance monitoring of geological CO2 storage with a superconducting gravimeter — A case study. Journal of Applied Geophysics, 2015, 114: 244- 250.
Krahenbuhl R A , Li Y G , Davis T . Understanding the applications and limitations of time-lapse gravity for reservoir monitoring. The Leading Edge, 2011, 30 (9): 1060- 1068.
Krahenbuhl R A , Li Y G . Time-lapse gravity: A numerical demonstration using robust inversion and joint interpretation of 4D surface and borehole data. Geophysics, 2012, 77 (2): G33- G43.
Krahenbuhl R A , Martinez C , Li Y G , et al. Time-lapse monitoring of CO2 sequestration: A site investigation through integration of reservoir properties, seismic imaging, and borehole and surface gravity data. Geophysics, 2015, 80 (2): WA15- WA24.
Li H L , Chen S , Zhuang J C , et al. Gravity inversion method base on Bayesian-assimilation and its application in constructing crust density model of the Longmenshan region. Chinese Journal of Geophysics, 2021, 64 (4): 1236- 1252.
Li Q, Song R R, Liu X H, et al. 2016. Monitoring of carbon dioxide geological utilization and storage in China: A review. //Wu Y, Carroll J J, Zhu W Y eds. Acid Gas Extraction for Disposal and Related Topics. Scrivener Publishing, 331-358, doi: 10.1002/9781118938652.ch22.
Liu G X. 2012. Carbon dioxide geological storage: Monitoring technologies review. //Liu G X et. Greenhouse Gases-Capturing, Utilization and Reduction. InTech, 299-338, doi: 10.5772/32777.
Liu J , Zhang J Z . Review of velocity-density coupling in joint inversion of seismic and gravity data. Progress in Geophysics, 2020, 35 (3): 976- 986.
Liu Y, Huang Y, Lü Q T. 2023. Research on adaptive mesh-free approach for gravity inversion. //Proceedings of the Second National Conference on Mineral Exploration (in Chinese). Weihai, 513-520.
Liu Y , Q T , Li X B , et al. 3D gravity inversion based on Bayesian method with model order reduction. Chinese Journal of Geophysics, 2015, 58 (12): 4727- 4739.
Lofts J, Zett A, Clifford P, et al. 2019. Three-axis borehole gravity logging for reservoir surveillance. //SPE Middle East Oil and Gas Show and Conference. Manama, Bahrain: SPE, doi: 10.2118/194845-MS.
MacQueen J D. 2010. Improved tidal corrections for time-lapse microgravity surveys. //SEG Technical Program Expanded Abstracts 2010. SEG, 1142-1145, doi: 10.1190/1.3513046.
Metz B, Davidson O, De Coninck H, et al. 2005. IPCC Special Report on Carbon dioxide Capture and Storage. Policy Stud.
Nind C , MacQueen J , Wasylechko R , et al. GRAVILOG: An update on the development and use of Borehole Gravity for Mining Exploration. ASEG Extended Abstracts, 2013, 2013 (1): 1- 5.
Nooner S L , Eiken O , Hermanrud C , et al. Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements. International Journal of Greenhouse Gas Control, 2007, 1 (2): 198- 214.
Paradis S , Goñi M , Masqué P , et al. Persistence of biogeochemical alterations of deep-sea sediments by bottom trawling. Geophysical Research Letters, 2021, 48 (2): e2020GL091279
Peng G M , Sun Z Y , Liu Z . 3D joint inversion of surface and borehole gravity data using zeroth-order minimum entropy regularization. Applied Geophysics, 2021, 18 (2): 131- 144.
Peng G M , Liu Z . 3D focusing inversion of gravity data based on q-Gaussian distribution and zeroth-order minimum entropy regularization. Chinese Journal of Geophysics, 2022, 65 (5): 1866- 1882.
Qin J S , Li Y L , Wu D B , et al. CCUS global progress and China's policy suggestions. Petroleum Geology and Recovery Efficiency, 2020, 27 (1): 20- 28.
Reitz A , Krahenbuhl R , Li Y G . Feasibility of time-lapse gravity and gravity gradiometry monitoring for steam-assisted gravity drainage reservoirs. Geophysics, 2015, 80 (2): WA99- WA111.
Rim H , Li Y G . Advantages of borehole vector gravity in density imaging. Geophysics, 2015, 80 (1): G1- G13.
Ruiz H, Lien M, Vatshelle M, et al. 2020. Monitoring the Snøhvit gas field using seabed gravimetry and subsidence. //SEG Technical Program Expanded Abstracts 2020. Virtual: Society of Exploration Geophysicists, 3768-3772, doi: 10.1190/segam2020-3413983.1.
Sherlock D , Toomey A , Hoversten M , et al. Gravity monitoring of CO2 storage in a depleted gas field: a sensitivity study. Exploration Geophysics, 2006, 37 (1): 37- 43.
Stenvold T , Eiken O , Landrø M . Gravimetric monitoring of gas-reservoir water influx — A combined flow-and gravity-modeling approach. Geophysics, 2008, 73 (6): WA123- WA131.
Sugihara M , Nawa K , Nishi Y , et al. Continuous gravity monitoring for CO2 geo-sequestration. Energy Procedia, 2013, 37: 4302- 4309.
Sugihara M , Nawa K , Soma N , et al. Continuous gravity monitoring for CO2 geo-sequestration (2) a case study at the farnsworth CO2-EOR field. Energy Procedia, 2014, 63: 4404- 4410.
Tempone P , Landrø M , Fjær E . 4D gravity response of compacting reservoirs: Analytical approach. Geophysics, 2012, 77 (3): G45- G54.
Topham A, Lofts J, Du Z J, et al. 2020. 3-Axis borehole gravity: method and application to CO2 storage monitoring and oil/gas production. //SPE Annual Technical Conference and Exhibition. Virtual: SPE, doi: 10.2118/201441-MS.
Tveit S , Mannseth T , Park J , et al. Combining CSEM or gravity inversion with seismic AVO inversion, with application to monitoring of large-scale CO2 injection. Computational Geosciences, 2020, 24 (3): 1201- 1220.
Um E S , Commer M , Newman G A . A strategy for coupled 3D imaging of large-scale seismic and electromagnetic data sets: Application to subsalt imaging. Geophysics, 2014, 79 (3): ID1- ID13.
Um E S , Alumbaugh D , Commer M , et al. Deep learning multiphysics network for imaging CO2 saturation and estimating uncertainty in geological carbon storage. Geophysical Prospecting, 2024, 72 (1): 183- 198.
Unwin S D , Sadovsky A , Sullivan E C , et al. Risk-informed monitoring, verification and accounting (RI-MVA). An NRAP white paper documenting methods and a demonstration model for risk-informed MVA system design and operations in geologic carbon sequestration. WA (United States): Pacific Northwest National Lab, 2011
Van Camp M , De Viron O , Watlet A , et al. Geophysics from terrestrial time-variable gravity measurements. Reviews of Geophysics, 2017, 55 (4): 938- 992.
Vigouroux N , Williams-Jones G , Chadwick W , et al. 4D gravity changes associated with the 2005 eruption of Sierra NEGRA volcano, Galápagos. Geophysics, 2008, 73 (6): WA29- WA35.
Wan L, Han M, Ali AlJanobi H, et al. 2018. Feasibility study of gravity gradiometry monitoring of CO2 sequestration in deep reservoirs using surface and borehole data. //SEG Technical Program Expanded Abstracts 2018. Anaheim, California: Society of Exploration Geophysicists, 1450-1454, doi: 10.1190/segam2018-2996382.1.
Wang H Y. 2014. Application of SAGD time-lapse microgravity monitoring technology. //Proceedings of the 2014 China Geoscience Joint Academic Conference-Topic 18: Reservoir Geophysics (in Chinese). Beijing: 99-102.
Wang J , Sun S A , Xing L L , et al. Drift characteristics of CG-5 gravimeter. Journal of Geodesy and Geodynamics, 2016, 36 (6): 556- 560.
Wang X , Guo L H . Density interface inversion method in spherical coordinates and its application in the South China. Geophysical and Geochemical Exploration, 2020, 44 (5): 1161- 1171.
Wei S C , Xu J Q , Zhou J C . Piece-wise linear dynamic adjustment for gravity network. Acta Geodaetica et Cartographica Sinica, 2016, 45 (5): 511- 520.
Wilkinson M , Mouli-Castillo J , Morgan P , et al. Time-lapse gravity surveying as a monitoring tool for CO2 storage. International Journal of Greenhouse Gas Control, 2017, 60: 93- 99.
Wu B . Research on the noise sources and the systematic errors of the high precision cold atom gravimeter. Hangzhou: Zhejiang University, 2014
Xu G F, Zhao W J, He Z X, et al. 2017. Application of time-shifted microgravity monitoring technology in oil and gas field development. //Chinese Petroleum Society Professional Committee of Physical Exploration (in Chinese). Tianjin, 788-790.
Yang X J , Buscheck T A , Mansoor K , et al. Assessment of geophysical monitoring methods for detection of brine and CO2 leakage in drinking water aquifers. International Journal of Greenhouse Gas Control, 2019, 90: 102803
Yang X J , Chen X , Smith M M . Deep learning inversion of gravity data for detection of CO2 plumes in overlying aquifers. Journal of Applied Geophysics, 2022, 196: 104507
Young W M , Lumley D . Feasibility analysis for time-lapse seafloor gravity monitoring of producing gas fields in the Northern Carnarvon Basin, offshore Australia. Geophysics, 2015, 80 (2): WA149- WA160.
Zhang K , Chen Z X , Lan H F , et al. Status and prospects of carbon capture, utilization and storage technology. Special Oil & Gas Reservoirs, 2023, 30 (2): 1- 9.
Zhang Q , Cui Y J , Bu X P , et al. Coal combined oil and coal chemical industry. Shenhua Science and Technology, 2011, 9 (2): 77- 82.
Zhang Y , Sun J W , Zhao H D , et al. Path for realization of ecological product value of CO2 geological storage in Inner Mongolia under the carbon peak and carbon neutrality goals. Journal of Arid Land Resources and Environment, 2022, 36 (11): 19- 26.
Zhao G S . Geophysical monitoring for geological carbon sequestration: present status, challenges, and future development. Geophysical Prospecting for Petroleum, 2023, 62 (2): 194- 211.
Zhao W J, Liu Y X, Hu W T, et al. 2017. Application of time-lapse microgravity monitoring technology in gas reservoir development. //Proceedings of the 2017 China Geoscience Joint Annual Academic Conference (32)-Topic 61: Advances and Applications of Engineering Geophysical Technologies, Topic 62: Reservoir Geophysics (in Chinese). Beijing, 37-38.
Zhou X Y, Chen Z X, Zhang H, et al. 2023. Intelligent inversion study on reparameterisation of well ground gravity data model. //Proceedings of the Second National Mineral Exploration Conference. Weihai, 12-16.
Zumberge M , Alnes H , Eiken O , et al. Precision of seafloor gravity and pressure measurements for reservoir monitoring. Geophysics, 2008, 73 (6): WA133- WA141.
, 真理 , , 等. 双树复小波变换在时移微重力监测上的应用——以辽河油田SAGD区为例. 地球物理学进展, 2021, 36 (2): 549- 558.
召曦 , 小红 , 良辉 , 等. 基于GPU并行的重力、重力梯度三维正演快速计算及反演策略. 地球物理学报, 2012, 55 (12): 4069- 4077.
丰洲 , 春阳 . 高精度重力仪的测量原理与发展现状. 仪器仪表学报, 2017, 38 (8): 1830- 1840.
江培 , 家云 , , 等. 云南流动重力观测中相对重力仪漂移估计方法. 地震研究, 2023, 46 (4): 511- 520.
江培 , 青华 , 声鑫 , 等. CG-5重力仪一次项系数变化特性分析及其对观测数据的影响研究. 地震研究, 2020, 43 (1): 101- 108.
黄锐. 2022. 基于深度学习的大规模重力反演[硕士论文]. 武汉: 中国地质大学.
贾剑钢. 2019. 精密重力测量技术及其应用研究[博士论文]. 武汉: 武汉大学.
红蕾 , , 建仓 , 等. 贝叶斯同化重力反演方法构建龙门山地壳密度模型. 地球物理学报, 2021, 64 (4): 1236- 1252.
, 建中 . 重震联合中速度-密度耦合研究综述. 地球物理学进展, 2020, 35 (3): 976- 986.
刘彦, 黄尧, 吕庆田. 2023. 基于自适应的无网格重力反演方法研究. //第二届全国矿产勘查大会论文集. 威海, 513-520.
, 庆田 , 晓斌 , 等. 基于模型降阶的贝叶斯方法在三维重力反演中的实践. 地球物理学报, 2015, 58 (12): 4727- 4739.
国民 , . 基于q-高斯分布和零阶最小熵正则化的三维重力聚焦反演. 地球物理学报, 2022, 65 (5): 1866- 1882.
积舜 , 永亮 , 德斌 , 等. CCUS全球进展与中国对策建议. 油气地质与采收率, 2020, 27 (1): 20- 28.
王宏远. 2014. SAGD时移微重力监测技术的应用. //2014年中国地球科学联合学术年会——专题18: 油藏地球物理论文集. 北京: 99-102.
, 少安 , 乐林 , 等. CG-5重力仪的漂移特征. 大地测量与地球动力学, 2016, 36 (6): 556- 560.
, 良辉 . 球坐标系密度界面反演方法及在华南大陆的应用. 物探与化探, 2020, 44 (5): 1161- 1171.
寿春 , 建桥 , 江存 . 重力网的分段线性动态平差. 测绘学报, 2016, 45 (5): 511- 520.
吴彬. 2014. 高精度冷原子重力仪噪声与系统误差研究. 杭州: 浙江大学.
徐桂芬, 赵文举, 何展翔, 等. 2017. 时移微重力监测技术在油气田开发中的应用. //中国石油学会2017年物探技术研讨会. 天津, 788-790.
, 掌星 , 海帆 , 等. 碳捕集、利用与封存技术的现状及前景. 特种油气藏, 2023, 30 (2): 1- 9.
, 永君 , 学朋 , 等. CCS监测技术发展现状分析. 神华科技, 2011, 9 (2): 77- 82.
, 佳文 , 海东 , 等. 碳达峰碳中和目标下内蒙古CO2地质封存的生态产品价值实现路径. 干旱区资源与环境, 2022, 36 (11): 19- 26.
改善 . 二氧化碳地质封存地球物理监测: 现状、挑战与未来发展. 石油物探, 2023, 62 (2): 194- 211.
赵文举, 刘云祥, 胡文涛, 等. 2017. 时移微重力监测技术在气藏开发中的应用. //2017中国地球科学联合学术年会论文集(三十二)——专题61: 工程地球物理技术进展与应用、专题62: 油藏地球物理. 北京, 37-38.
周新溢, 陈召曦, 张鹤, 等. 2023. 井地重力数据模型重参数化智能反演研究. //第二届全国矿产勘查大会论文集. 威海, 12-16.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(2497 KB)

Accesses

Citation

Detail

Sections
Recommended

/