Thickness and Vp/Vs of sedimentary and bedrock layers and their tectonic implications in the Weiyuan shale gas field, Sichuan

ZhiWei CHENG, ZiGen WEI, Chao JIN, Jun XIE, XinTian FAN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 440-447.

PDF(7032 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7032 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 440-447. DOI: 10.6038/pg2025II0029

Thickness and Vp/Vs of sedimentary and bedrock layers and their tectonic implications in the Weiyuan shale gas field, Sichuan

Author information +
History +

Abstract

The study of sedimentary and crystalline bedrock layers in the basin is of great significance to understand the basin's properties and evolution. In this paper, we adopted a multifrequency and multilayer H-κ stacking approach of receiver function to obtain the thickness and Vp/Vs ratio of sedimentary and bedrock layers beneath 26 temporary seismic stations in Weiyuan area. In the syncline area, the average thickness and Vp/Vs ratio of the sedimentary layer are 4.56 km and 1.92, respectively; the average thickness and Vp/Vs ratio of the bedrock layer are 37.73 km and 1.81, respectively. In the anticline area, the average thickness and Vp/Vs ratio of sedimentary layer are 3.21 km and 1.98, respectively; the average thickness and Vp/Vs ratio of bedrock layer are 40.56 km and 1.76, respectively. Combined with the results of the previous geological and geophysical studies in the area, we suggest that the study region maintains typical cratonic crust, the formation of the Weiyuan anticline may be a thin-skinned structure involving in sedimentary layer, and the shale gas has little effect on the Vp/Vs ratio of the sedimentary layer.

Key words

Weiyuan shale gas filed / Multifrequency multilayer H-κ stacking approach / Anticline and syncline areas / Thickness and Vp/Vs ratio of the sedimentary and bedrock layers

Cite this article

Download Citations
ZhiWei CHENG , ZiGen WEI , Chao JIN , et al . Thickness and Vp/Vs of sedimentary and bedrock layers and their tectonic implications in the Weiyuan shale gas field, Sichuan[J]. Progress in Geophysics. 2025, 40(2): 440-447 https://doi.org/10.6038/pg2025II0029

References

Aki K , Richards P G . Quantitative Seismology: Theory and Methods. San Francisco: W. H. Freeman, 1980
Coward M P . Thrust tectonics, thin skinned or thick skinned, and the continuation of thrusts to deep in the crust. Journal of Structural Geology, 1983, 5 (2): 113- 123.
Fan Z H. 2019. Study on shale gas enrichment condition of Lower Silurian Longmaxi Formation in Weiyuan area of Sichuan Basin [Ph. D. thesis](in Chinese). Chengdu: Chengdu University of Techology, doi: 10.26986/d.cnki.gcdlc.2019.001099.
Herrmann R B . Computer programs in seismology: an evolving tool for instruction and research. Seismological Research Letters, 2013, 84 (6): 1081- 1088.
Ji S C , Wang Q , Salisbury M H . Composition and tectonic evolution of the Chinese continental crust constrained by Poisson's ratio. Tectonophysics, 2009, 463 (1-4): 15- 30.
Lei X L , Su J R , Wang Z W . Growing seismicity in the Sichuan Basin and its association with industrial activities. Science China Earth Sciences, 2020, 63 (11): 1633- 1660.
Li H K , Li Z Q , Long W , et al. Vertical configuration of Sichuan Basin and its superimposed characteristics of the prototype basin. Journal of Chengdu University of Technology (Science & Technology Edition), 2019, 46 (3): 257- 267.
Li Q D , Xie Z J . Study of the crustal thickness and Poisson's ratio in Guangdong with receiver function method. Journal of Seismological Research, 2024, 47 (2): 212- 222.
Liu N Z , Wang G Y . Shale gas sweet spot identification and precise geo-steering drilling in Weiyuan Block of Sichuan Basin, SW China. Petroleum Exploration and Development, 2016, 43 (6): 978- 985.
Liu Q , Zhao R , Li N . Crustal thickness and Poisson's ratio beneath Xiangfan seismic station revealed by teleseismic receiver functions. Progress in Earthquake Sciences, 2021, 51 (5): 230- 233.
Sheng M H , Chu R S , Ni S D , et al. Source parameters of three moderate size earthquakes in Weiyuan, China, and their relations to shale gas hydraulic fracturing. Journal of Geophysical Research: Solid Earth, 2020, 125 (10): e2020JB019932
Tang C C , Chen C H , Teng T L . Receiver functions for three-layer media. Pure and Applied Geophysics, 2008, 165 (7): 1249- 1262.
Wang H Y , Gao R , Lu Z W , et al. Deep crustal structure in Sichuan basin: deep seismic reflection profiling. Chinese Journal of Geophysics, 2017, 60 (8): 2913- 2923.
Wang M M , Hubbard J , Plesch A , et al. Three-dimensional seismic velocity structure in the Sichuan basin, China. Journal of Geophysical Research: Solid Earth, 2016, 121 (2): 1007- 1022.
Wang M M , Yang H F , Fang L H , et al. Shallow faults reactivated by hydraulic fracturing: the 2019 Weiyuan earthquake sequences in Sichuan, China. Seismological Research Letters, 2020, 91 (6): 3171- 3181.
Wang Z C , Zhao W Z , Zhang L , et al. Tectonic Sequences and Natural Gas Exploration in the Sichuan Basin. Beijing: Geology Press, 2002
Wei G Q , Chen G S , Du S M , et al. Petroleum systems of the oldest gas field in China: Neoproterozoic gas pools in the Weiyuan gas field, Sichuan Basin. Marine and Petroleum Geology, 2008, 25 (4-5): 371- 386.
Wei Z G , Chen L , Li Z W , et al. Regional variation in Moho depth and Poisson's ratio beneath eastern China and its tectonic implications. Journal of Asian Earth Sciences, 2016, 115: 308- 320.
Wei Z G , Chu R S , Chen L , et al. The structure of the sedimentary cover and crystalline crust in the Sichuan Basin and its tectonic implications. Geophysical Journal International, 2020a, 223 (3): 1879- 1887.
Wei Z G , Li Z W , Chen L , et al. Crustal structure underneath central China across the Tibetan Plateau, the North China Craton, the South China Block and the Qinling-Dabie Orogen constrained by multifrequency receiver function and surface wave data. Journal of Asian Earth Sciences, 2020b, 202: 104535
Wei Z G , Chu R S , Xie J , et al. Crustal structure in the Weiyuan shale gas field, China, and its tectonic implications. Tectonophysics, 2022, 837: 229449
Wei Z G , Chu R S , Wang J Q , et al. E-W and S-N differences in the Sedimentary Cover and Crystalline Crust in the Cratonic Ordos Basin from receiver function analysis. Journal of Geophysical Research: Solid Earth, 2023, 128 (2): e2022JB025696
Yeck W L , Sheehan A F , Schulte-Pelkum V . Sequential H-κ stacking to obtain accurate crustal thicknesses beneath sedimentary basins. Bulletin of the Seismological Society of America, 2013, 103 (3): 2142- 2150.
Yu Y Q , Song J G , Liu K H , et al. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions. Journal of Geophysical Research: Solid Earth, 2015, 120 (5): 3208- 3218.
Zeng Q , Chu R S , Sheng M H , et al. Seismic ambient noise tomography for shallow velocity structures beneath Weiyuan, Sichuan. Chinese Journal of Geophysics, 2020, 63 (3): 944- 955.
Zhang Y , Huang J L . Structure of the sediment and crust in the Northeast North China craton from improved sequential H-k stacking method. Open Geosciences, 2019, 11 (1): 682- 696.
Zhang Y Y , Chen L , Ai Y S , et al. Lithospheric structure of the South China Block from S receiver function. Chinese Journal of Geophysics, 2018, 61 (1): 138- 149.
Zhang Z J , Deng Y F , Chen L , et al. Seismic structure and rheology of the crust under China. Gondwana Research, 2013, 23 (4): 1455- 1483.
Zheng T Y , Zhao L , Zhu R X . New evidence from seismic imaging for subduction during assembly of the North China craton. Geology, 2009, 37 (5): 395- 398.
Zheng Y , Yang Y J , Ritzwoller M H , et al. Crustal structure of the northeastern Tibetan plateau, the Ordos block and the Sichuan basin from ambient noise tomography. Earthquake Science, 2010, 23 (5): 465- 476.
Zhu L P , Kanamori H . Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 2000, 105 (B2): 2969- 2980.
范增辉. 2019. 威远地区下志留统龙马溪组页岩气富集条件研究[博士论文]. 成都: 成都理工大学, doi: 10.26986/d.cnki.gcdlc.2019.001099.
洪奎 , 忠权 , , 等. 四川盆地纵向结构及原型盆地叠合特征. 成都理工大学学报(自然科学版), 2019, 46 (3): 257- 267.
其栋 , 卓娟 . 基于接收函数方法研究广东地区地壳厚度与泊松比. 地震研究, 2024, 47 (2): 212- 222.
乃震 , 国勇 . 四川盆地威远区块页岩气甜点厘定与精准导向钻井. 石油勘探与开发, 2016, 43 (6): 978- 985.
, , . 利用远震接收函数探测襄樊台下方地壳厚度及泊松比. 地震科学进展, 2021, 51 (5): 230- 233.
泽成 , 文智 , , 等. 四川盆地构造层序与天然气勘探. 北京: 地质出版社, 2002
海燕 , , 占武 , 等. 四川盆地深部地壳结构——深地震反射剖面探测. 地球物理学报, 2017, 60 (8): 2913- 2923.
, 日升 , 敏汉 , 等. 基于地震背景噪声的四川威远地区浅层速度结构成像研究. 地球物理学报, 2020, 63 (3): 944- 955.
耀阳 , , 印双 , 等. 利用S波接收函数研究华南块体的岩石圈结构. 地球物理学报, 2018, 61 (1): 138- 149.

感谢中国科学院精密测量科学与技术创新研究院提供观测数据,感谢审稿专家的建设性意见.

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(7032 KB)

Accesses

Citation

Detail

Sections
Recommended

/