Application of WOA optimized LightGBM in lithology identification of igneous logging

Huan FENG, GuoQiang ZHANG, Jun CAO, Hong REN, WenChun WAN, DiRen LIU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 230-242.

PDF(11928 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11928 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 230-242. DOI: 10.6038/pg2025II0031

Application of WOA optimized LightGBM in lithology identification of igneous logging

Author information +
History +

Abstract

The igneous rocks in Laizhou Bay, Southern Bohai Sea, exhibited complex and variable lithologies, posing significant challenges to accurately identify lithology using conventional logging cross-plots. To improve the precision of igneous rock lithology identification in study block A, a high-efficiency Light Gradient Boosting Machine (LightGBM) model was employed to identify lithology. Furthermore, the utilization of a greater number of hyperparameters by LightGBM necessitated the employment of the Whale Optimization Algorithm (WOA), which was renowned for its robust global optimization capabilities, to identify the optimal parameter solution. Consequently, a logging lithology identification approach was proposed based on WOA-LightGBM. Firstly, logging response of lithology was analyzed, and logging data with complete geological information, such as core and thin section, and complete regular nine logging curves were selected as the sample set. The sample set is then input into six models, namely, WOA-LightGBM, WOA-AdaBoost, WOA-SVM, LightGBM, AdaBoost, and SVM, for identification. And the results of identification process were compared and verified. Finally, the recognition models were applied to 15 wells. The results demonstrated that WOA-LightGBM model with optimal hyperparameters exhibited the highest recognition accuracy and the most robust generalization ability when the whale population was 50. There cognition accuracy in the sample set reached 91.62%, and macro-average F1-score was 87.41%, ROC-AUC was 0.9676, PR-AUC was 0.8726, Matthews Correlation Coefficient was 0.8902, and 0.3401 for Cross-entropy Loss. Thus, the WOA-LightGBM method can be employed as an effective means of intelligently recognizing the lithology of the igneous rocks in the Bohai Sea by utilizing logging curves. This approach can also serve as a reference for igneous lithology identification in other similar blocks.

Key words

Laizhou bay / Igneous rocks / Logging lithology identification / Light Gradient Boosting Machine (LightGBM) / Hyperparameters / Whale Optimization Algorithm (WOA)

Cite this article

Download Citations
Huan FENG , GuoQiang ZHANG , Jun CAO , et al . Application of WOA optimized LightGBM in lithology identification of igneous logging[J]. Progress in Geophysics. 2025, 40(1): 230-242 https://doi.org/10.6038/pg2025II0031

References

Dev V A , Eden M R . Formation lithology classification using scalable gradient boosted decision trees. Computers & Chemical Engineering, 2019, 128: 392- 404.
Feng C , Wang Q B , Wang L H , et al. Lithologic characteristics and logging identification of Mesozoic volcanic rock of Kenli 16-A Structure in Laizhouwan depression. Fault-Block Oil & Gas Field, 2018, 25 (3): 316- 321.
Guo B , Geng W , Chen H Q , et al. Prediction of Permian igneous rock reservoirs in Chengdu-Jianyang area. Oil Geophysical Prospecting, 2022, 57 (S1): 104- 109.
Huang B Z , Pan B Z . The log characteristics of deep igneous rocks and lithology determination in the northern Songliao Basin. Geophysical Prospecting for Petroleum, 2001, 40 (3): 42- 47.
Jiang T J . Research on prediction of loan repayment cash flow of inclusive finance customers: big data analysis based on customer behavior. New Finance, 2021, (12): 26- 31.
Li H J , Yang X F , Qin H . Identification of lithology and fluids of acid volcanic rocks: a case study of volcanic reservoirs in Xushen gas field. Natural Gas Industry, 2009, 29 (8): 29- 31.
Li S B , Guo X G , Zheng M L , et al. Lithology identification of carboniferous volcanic rocks in Xiquan area, eastern Junggar basin. Lithologic Reservoirs, 2021, 33 (1): 258- 266.
Li S W , Huang Y L , Feng Y H , et al. Cenozoic extension and strike-slip tectonics and fault structures in the eastern Sag, Liaohe depression. Chinese Journal of Geophysics, 2020, 63 (2): 612- 626.
Li X , Fan X Y , Wang Z F , et al. Logging lithology identification method research based on PSO-SVM: a case study of Paleozoic (PZ) reservoir in K oil field, South Turgay Basin, Kazakhstan. Progress in Geophysics, 2022, 37 (2): 617- 626.
Li Z M , Yazdani Bejarbaneh B , Asteris P G , et al. A hybrid GEP and WOA approach to estimate the optimal penetration rate of TBM in granitic rock mass. Soft Computing, 2021, 25 (17): 11877- 11895.
Mirjalili S , Lewis A . The whale optimization algorithm. Advances in Engineering Software, 2016, 95: 51- 67.
Mo K , Wang N , Li H J , et al. Network intrusion detection system model based on LightGBM. Journal of Information Security Research, 2019, 5 (2): 152- 156.
Mou D , Wang Z W , Huang Y L , et al. Lithological identification of volcanic rocks from SVM well logging data: case study in the eastern depression of Liaohe Basin. Chinese Journal of Geophysics, 2015, 58 (5): 1785- 1793.
Qiu Y G , Zhou J , Khandelwal M , et al. Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration. Engineering with Computers, 2021, 38 (S5): 4145- 4162.
Samantaray S , Sahoo A . Prediction of suspended sediment concentration using hybrid SVM-WOA approaches. Geocarto International, 2022, 37 (19): 5609- 5635.
Tang H F , Tian Z W , Gao Y F , et al. Review of volcanic reservoir geology in China. Earth-Science Reviews, 2022, 232: 104158
Ye T , Wei A J , Deng H , et al. Study on volcanic lithology identification methods based on the data of conventional well logging data: a case from Mesozoic volcanic rocks in Bohai bay area. Progress in Geophysics, 2017, 32 (4): 1842- 1848.
Zhang F M , Hou Y , Zhu M , et al. Present situation and development trend prospect in volcanic reservoir evaluation based on well logging data. Progress in Geophysics, 2016, 31 (4): 1732- 1751.
Zhang X F , Fan X M . Application of crossplot and carbon software to recognition of pyroclastic rock. Journal of Jilin University (Earth Science Edition), 2007, 37 (S1): 102- 104.
Zhang Y , Pan B Z , Yin C H , et al. Application of imaging logging maps in lithologic identification of volcanics. Geophysical Prospecting for Petroleum, 2007, 46 (3): 288- 293.
Zhao J , Wang W M , Yang Z D , et al. Lithology identification method of volcanic rocks based on DBN model: an case in Chepaizi area. Progress in Geophysics, 2022, 37 (1): 328- 337.
Zhou K B , Hu Y X , Pan H , et al. Fast prediction of reservoir permeability based on embedded feature selection and LightGBM using direct logging data. Measurement Science and Technology, 2020, 31 (4): 045101
Zhou T , Yang J , Zhou Q M , et al. Power system transient stability assessment method based on modified LightGBM. Power System Technology, 2019, 43 (6): 1931- 1940.
, 清斌 , 立红 , 等. 莱州湾凹陷垦利16-A构造火山岩岩性特征与测井识别. 断块油气田, 2018, 25 (3): 316- 321.
, , 海清 , 等. 成都—简阳地区二叠系火成岩储层预测. 石油地球物理勘探, 2022, 57 (S1): 104- 109.
布宙 , 保芝 . 松辽盆地北部深层火成岩测井响应特征及岩性划分. 石油物探, 2001, 40 (3): 42- 47.
腾蛟 . 普惠金融客户还贷现金流预测研究——基于客户行为的大数据分析. 新金融, 2021, (12): 26- 31.
洪娟 , 学峰 , . 酸性火山岩储层岩性与流体识别. 天然气工业, 2009, 29 (8): 29- 31.
树博 , 旭光 , 孟林 , 等. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别. 岩性油气藏, 2021, 33 (1): 258- 266.
思伟 , 玉龙 , 玉辉 , 等. 辽河盆地东部凹陷新生代伸展-走滑构造作用及断裂构造特征. 地球物理学报, 2020, 63 (2): 612- 626.
, 翔宇 , 兆峰 , 等. 基于PSO-SVM的测井岩性识别方法研究——以南图尔盖盆地K油田古生界(Pz)储层为例. 地球物理学进展, 2022, 37 (2): 617- 626.
, , 恒吉 , 等. 基于LightGBM的网络入侵检测系统. 信息安全研究, 2019, 5 (2): 152- 156.
, 祝文 , 玉龙 , 等. 基于SVM测井数据的火山岩岩性识别——以辽河盆地东部坳陷为例. 地球物理学报, 2015, 58 (5): 1785- 1793.
, 阿娟 , , 等. 基于常规测井资料的火山岩岩性识别方法研究——以渤海海域中生界为例. 地球物理学进展, 2017, 32 (4): 1842- 1848.
福明 , , , 等. 火山岩储层测井评价技术现状及发展趋势. 地球物理学进展, 2016, 31 (4): 1732- 1751.
晓峰 , 晓敏 . 交会图和Carbon软件在火山碎屑岩识别中的应用. 吉林大学学报(地球科学版), 2007, 37 (S1): 102- 104.
, 保芝 , 长海 , 等. 成像测井图像在火山岩岩性识别中的应用. 石油物探, 2007, 46 (3): 288- 293.
, 伟明 , 志冬 , 等. 基于DBN模型的火山岩岩性识别方法——以车排子地区为例. 地球物理学进展, 2022, 37 (1): 328- 337.
, , 强明 , 等. 基于改进LightGBM的电力系统暂态稳定评估方法. 电网技术, 2019, 43 (6): 1931- 1940.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(11928 KB)

Accesses

Citation

Detail

Sections
Recommended

/