What is the properties of the PmP' wave group for deep seismic sounding in West Cathaysia block?

HanQi LIU, FuYun WANG, JiaJia SONG, ShuaiJun WANG, XiangHui SONG, XueYing ZHANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 432-439.

PDF(11664 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11664 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 432-439. DOI: 10.6038/pg2025II0032

What is the properties of the PmP' wave group for deep seismic sounding in West Cathaysia block?

Author information +
History +

Abstract

The PmP' wave group with long offset has the characteristics of flat geometry, low apparent velocity and above the zero line of travel time in the seismic record section with the observation length of more than 250 km or more in the deep seismic sounding data of the western Cathaysia block. Because it is connected to the PmP reflected wave group and the waveform is similar, the conventional wave group identification is often used as a part of the PmP wave group. Using this wave group as part of the PmP wave group for theoretical seismogram simulation, it is difficult to obtain satisfactory fitting of travel time and amplitude at the same time. Taking the far-offset PmP' wave group of the wide-angle reflection/refraction profile SP3 of the Lianping—Heyuan—Haifeng earthquake in eastern Guangdong in 2021 as an example, the apparent velocity at the farthest end of the wave group is calculated to be 6.04 km/s, which is less than the average P wave velocity of the crust calculated by the travel time of the PmP wave group in the critical region of 6.27 km/s, indicating that the wave does not have the property of PmP wave. A new lower crust and Moho interface model is used to fit the two-dimensional theoretical seismograms of the PmP' wave group. The results show that this wave is a refracted wave from the lower crust, indicating that the lower crust of the Western Cathaysia block generally has a positive velocity gradient structure. This reflects the result of magma intrusion since the Mesozoic era in the southeastern margin of South China, which may be the direct evidence of newly crust.

Key words

West Cathaysia block / Deep seismic sounding long offset PmP' wave / Wave group quantitative analysis / Synthetic seismogram simulation / Lower crust model

Cite this article

Download Citations
HanQi LIU , FuYun WANG , JiaJia SONG , et al . What is the properties of the PmP' wave group for deep seismic sounding in West Cathaysia block?[J]. Progress in Geophysics. 2025, 40(2): 432-439 https://doi.org/10.6038/pg2025II0032

References

Cai H T , Jin X , Wang S X , et al. The crust structure and velocity structure characteristics beneath Ninghua-Datian-Hui'an. Chinese Journal of Geophysics, 2016, 59 (1): 157- 168.
Cao J H , Sun J L , Xu H L , et al. Seismological features of the littoral fault zone in the Pearl River Estuary. Chinese Journal of Geophysics, 2014, 57 (2): 498- 508.
Červený V , Popov M M , Pšencčík I . Computation of wave fields in inhomogeneous media—Gaussian beam approach. Geophysical Journal International, 1982, 70 (1): 109- 128.
Deng Y F , Li S L , Fan W M , et al. Crustal structure beneath South China revealed by deep seismic soundings and its dynamics implications. Chinese Journal of Geophysics, 2011, 54 (10): 2560- 2574.
Dong S W , Li J H , Cawood P A , et al. Mantle influx compensates crustal thinning beneath the Cathaysia Block, South China: evidence from SINOPROBE reflection profiling. Earth and Planetary Science Letters, 2020, 544: 116360
Hou J , Xu T , Q T , et al. The deep background of large-scale, Mesozoic Cu-Au-W metallogenesis in northeastern South China: constraints from Yingshan-Changshan wide-angle seismic reflection/refraction data. Science China Earth Sciences, 2022a, 65 (11): 2202- 2218.
Hou J , Xu T , Q T , et al. The fine upper crustal structure below the Qin-Hang and Wuyishan metallogenic belts revealed by double beamforming ambient noise tomography. Chinese Journal of Geophysics, 2022b, 65 (10): 3881- 3899.
Huang M F , Xu T , Q T , et al. Crustal structure along the Wanzai-Yongchun profile in the Cathaysia Block, Southeast China, constrained by a joint active-and passive-source seismic experiment. Geophysical Journal International, 2022, 231 (1): 384- 393.
Li P , Jin X , Wang S X , et al. Crustal velocity structure of the Shaowu-Nanping-Pingtan transect through Fujian from deep seismic sounding-tectonic implications. Science China Earth Sciences, 2015, 58 (12): 2188- 2199.
Li Z X , Li X H . Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 2007, 35 (2): 179- 182.
Liao Q L , Wang Z M , Wang P L , et al. Explosion seismic study of the crustal structure in Fuzhou-Quanzhou-Shantou region. Chinese Journal of Geophysics, 1988, 31 (3): 270- 280.
Liao Q L , Wang Z M , Qiu T X , et al. Preliminary research of the crustal structure in Fuzhou basin and its adjacent area. Chinese Journal of Geophysics, 1990, 33 (2): 163- 173.
Lin J Y , Xu T , Cai H T , et al. Crustal velocity structure of Cathaysia Block from an active-source seismic profile between Wanzai and Hui'an in SE China. Tectonophysics, 2021, 811: 228874
Z Y , Qiu X L , J S , et al. Crustal structure beneath the east side of Pearl River Estuary from onshore-offshore seismic experiment. International Geology Review, 2020, 62 (7-8): 1057- 1069.
Xia S H , Qiu X L , Tong C H , et al. Three-dimensional tomographic model of the crust beneath the Hong Kong region. Geology, 2012, 40 (1): 59- 62.
Xiong S B , Jin D M , Sun K Z , et al. Some characteristics of deep structure of the Zhangzhou geothermal field and it's neighbourhood in the Fujian province. Chinese Journal of Geophysics, 1991, 34 (1): 55- 63.
Xiong X S , Gao R , Li Q S , et al. The Moho depth of South China revealed by seismic probing. Acta Geoscientica Sinica, 2009, 30 (6): 774- 786.
Yang B F , Xiong C , Cao J H , et al. Constrains of sliding wave phases on the low-velocity layer in the Pearl River Estuary. Journal of Tropical Oceanography, 2020, 39 (1): 106- 119.
Ye X W , Zhang X , J S , et al. Crustal structure and tectonic attribute revealed by a deep seismic sounding profile of Dinghu-Gaoming Jinwan in the pearl river delta. Chinese Journal of Geophysics, 2020, 63 (5): 1959- 1969.
Ye X W , Z Y , Wang L , et al. Fine crustal velocity structure revealed by a deep seismic sounding profile of Lianping-Heyuan-Shanwei in the Eastern Guangdong. Chinese Journal of Geophysics, 2024, 67 (6): 2304- 2321.
Yin Z X , Lai M H , Xiong S B , et al. Crustal structure and velocity distribution from deep seismic sounding along the profile of Lianxian-Boluo-Gangkou in South China. Chinese Journal of Geophysics, 1999, 42 (3): 383- 392.
Zhang X , Gong X , Sun J L . Application of large capacity air gun in three-dimensional crustal structure exploration of the Pearl River estuary area. IOP Conference Series: Earth and Environmental Science, 2017, 69 (1): 012035
Zhang X , Ye X W , J S , et al. Crustal structure revealed by a deep seismic sounding profile of Baijing-Gaoming-Jinwan in the Pearl River Delta. Journal of Ocean University of China, 2018, 17 (1): 186- 194.
Zhang Z J , Wang Y H . Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Physics of the Earth and Planetary Interiors, 2007, 165 (1-2): 114- 126.
Zhao B , Zhang Z , Bai Z M , et al. Shear velocity and Vp/Vs ratio structure of the crust beneath the southern margin of South China continent. Journal of Asian Earth Sciences, 2013, 62: 167- 179.
Zhao M H , Qiu X L , Ye C M , et al. Analysis on deep crustal structure along the onshore-offshore seismic profile across the Binhai (littoral) Fault Zone in northeastern South China Sea. Chinese Journal of Geophysics, 2004, 47 (5): 845- 852.
Zhou P X , Xia S H , Hetényi G , et al. Seismic imaging of a mid-crustal low-velocity layer beneath the northern coast of the South China Sea and its tectonic implications. Physics of the Earth and Planetary Interiors, 2020, 308: 106573
Zhou X , Sun T , Shen W , et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes, 2006, 29 (1): 26- 33.
辉腾 , , 善雄 , 等. 宁化-大田-惠安地壳构造与速度结构特征. 地球物理学报, 2016, 59 (1): 157- 168.
敬贺 , 金龙 , 辉龙 , 等. 珠江口海域滨海断裂带的地震学特征. 地球物理学报, 2014, 57 (2): 498- 508.
阳凡 , 守林 , 蔚茗 , 等. 深地震测深揭示的华南地区地壳结构及其动力学意义. 地球物理学报, 2011, 54 (10): 2560- 2574.
, , 庆田 , 等. 华南东北部中生代铜金钨大规模成矿的深部背景: 来自英山-常山宽角地震资料的约束. 中国科学: 地球科学, 2022a, 52 (11): 2305- 2322.
, , 庆田 , 等. 双聚束噪声成像揭示钦杭与武夷山成矿带上地壳精细结构. 地球物理学报, 2022b, 65 (10): 3881- 3899.
, , 善雄 , 等. 福建邵武-南平-平潭深地震测深剖面的地壳速度结构及其构造意义. 中国科学: 地球科学, 2015, 45 (11): 1757- 1767.
其林 , 振明 , 屏路 , 等. 福州-泉州-汕头地区地壳结构的爆炸地震研究. 地球物理学报, 1988, 31 (3): 270- 280.
其林 , 振明 , 陶兴 , 等. 福州盆地及其周围地区地壳深部结构与构造的初步研究. 地球物理学报, 1990, 33 (2): 163- 173.
绍柏 , 东敏 , 克忠 , 等. 福建漳州地热田及其邻近地区的地壳深部构造特征. 地球物理学报, 1991, 34 (1): 55- 63.
小松 , , 秋生 , 等. 深地震探测揭示的华南地区莫霍面深度. 地球学报, 2009, 30 (6): 774- 786.
碧峰 , , 敬贺 , 等. 滑行波震相对珠江口地区壳内低速层的约束作用. 热带海洋学报, 2020, 39 (1): 106- 119.
秀薇 , , 金水 , 等. 珠三角鼎湖-高明-金湾深地震测深剖面地壳构造与速度结构特征分析. 地球物理学报, 2020, 63 (5): 1959- 1969.
秀薇 , 作勇 , , 等. 粤东连平-河源-汕尾地震测深剖面地壳速度结构及其意义. 地球物理学报, 2024, 67 (6): 2304- 2321.
周勋 , 明惠 , 绍柏 , 等. 华南连县-博罗-港口地带地壳结构及速度分布的爆炸地震探测结果. 地球物理学报, 1999, 42 (3): 383- 392.
明辉 , 学林 , 春明 , 等. 南海东北部海陆深地震联测与滨海断裂带两侧地壳结构分析. 地球物理学报, 2004, 47 (5): 845- 852.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(11664 KB)

Accesses

Citation

Detail

Sections
Recommended

/