Local-scale frequency-wavenumber domain phase inversion

PengFei KANG, Yong HU, RuiDong LIU, Chong SUN, Zhuo ZHAO, Ping YUAN, MingJun Zhen, YiFan MENG, YongZhong XU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 155-165.

Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 155-165. DOI: 10.6038/pg2025II0034

Local-scale frequency-wavenumber domain phase inversion

Author information +
History +

Abstract

Full Waveform Inversion (FWI) is an important method to obtain high-resolution velocity models. However, the seismic data are absence of low-frequency components, the conventional FWI results will have serious cycle skipping problem, which affects the accuracy of the final velocity modeling. For this reason, this paper proposes a local-scale frequency-wavenumber domain phase inversion method, which fully considers the local features of seismic data in the time and offset directions, and utilizes the local-scale decomposition strategy of seismic data and 2D Fourier transform to construct a local-scale frequency-wavenumber domain phase misfit function, to recover the low-wavenumber components of the velocity model and to provide a better initial velocity model for the FWI method. In this paper, we first utilize a 2D sliding window function to extract the local-scale seismic data, and combine it with the 2D Fourier transform to establish the local-scale frequency-wavenumber domain phase information based misfit function. Then, we derived the adjoint-source and gradient operator corresponding to the phase inversion in the local-scale frequency-wavenumber domain. Finally, the test results of the Marmousi model and the igneous-carbonate model show that the local-scale frequency-wavenumber domain phase inversion can provide a better initial velocity model for the conventional FWI method and mitigate the FWI cycle skipping.

Key words

Frequency-wavenumber domain / Full waveform inversion / Phase inversion / Local-scale / Misfit function

Cite this article

Download Citations
PengFei KANG , Yong HU , RuiDong LIU , et al . Local-scale frequency-wavenumber domain phase inversion[J]. Progress in Geophysics. 2025, 40(1): 155-165 https://doi.org/10.6038/pg2025II0034

References

Bednar J B , Shin C , Pyun S . Comparison of waveform inversion, part 2: phase approach. Geophysical Prospecting, 2007, 55 (4): 465- 475.
Chen G X , Yang W C , Liu Y N , et al. Envelope-based sparse-constrained deconvolution for velocity model building. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4501413
Chen S C , Chen G X . Time-damping full waveform inversion of multi-dominant-frequency wavefields. Chinese Journal of Geophysics, 2017, 60 (8): 3229- 3237.
Chi B X , Dong L G , Liu Y Z . Full waveform inversion method using envelope objective function without low frequency data. Journal of Applied Geophysics, 2014, 109: 36- 46.
Choi Y . Time-domain pure-phase inversion of wavefield in exponential damping. Journal of Applied Geophysics, 2022, 204: 104734
Fichtner A , Kennett B L N , Igel H , et al. Theoretical background for continental-and global-scale full-waveform inversion in the time-frequency domain. Geophysical Journal International, 2008, 175 (2): 665- 685.
Fu L , Guo B W , Schuster G T . Multiscale phase inversion of seismic data. Geophysics, 2018, 83 (1): R159- R171.
Guo X B , Liu H , Shi Y . Time domain full waveform inversion based on frequency attenuation. Chinese Journal of Geophysics, 2016, 59 (10): 3777- 3787.
Ha W , Shin C . Deconvolution-based objective functions for full waveform inversion in the Laplace domain. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5904708
Hu Y , Han L G , Yu J L , et al. Time-frequency domain multi-scale full waveform inversion based on adaptive non-stationary phase correction. Chinese Journal of Geophysics, 2018, 61 (7): 2969- 2988.
Hu Y , Han L G , Wu R S , et al. Multi-scale time-frequency domain full waveform inversion with a weighted local correlation-phase misfit function. Journal of Geophysics and Engineering, 2019a, 16 (6): 1017- 1031.
Hu Y , Wu R S , Han L G , et al. Joint multiscale direct envelope inversion of phase and amplitude in the time-frequency domain. IEEE Transactions on Geoscience and Remote Sensing, 2019b, 57 (7): 5108- 5120.
Hu Y , Wu R S , Huang X G , et al. Phase-amplitude-based polarized direct envelope inversion in the time-frequency domain. Geophysics, 2022, 87 (3): R245- R260.
Kwon J , Jun H , Song H , et al. Waveform inversion in the shifted Laplace domain. Geophysical Journal International, 2017, 210 (1): 340- 353.
Lailly P. 1983. The seismic inverse problem as a sequence of before stack migrations. //Bednar J B, Robinson E, Weglein A eds. Conference on Inverse Scattering—Theory and Application. Philadelphia: SIAM, 206-220.
Li J S , Liu W K , Liang Y X , et al. Time-domain full waveform inversion based on high-order amplitude information. Progress in Geophysics, 2023, 38 (4): 1603- 1609.
Li Z C , Wang Z Y , Huang J P , et al. Multi-scale full waveform inversion based ongradient decomposition in wavenumber domain. Chinese Journal of Geophysics, 2022, 65 (7): 2693- 2703.
Liang Z Y , Wu G C , Zhang X Y . Envelope inversion method based on frequency-shifted objective function. Progress in Geophysics, 2019, 34 (4): 1481- 1488.
Luo J R , Wang B F . Initial model building in time domain elastic full waveform inversion using the instantaneous phase information. Progress in Geophysics, 2018, 33 (6): 2435- 2440.
Luo J R , Wu R S , Gao F C . Time-domain full waveform inversion using instantaneous phase information with damping. Journal of Geophysics and Engineering, 2018, 15 (3): 1032- 1041.
Luo J R , Wang B F , Wu R S , et al. Elastic full waveform inversion with angle decomposition and wavefield decoupling. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (1): 871- 883.
Plessix R E . A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International, 2006, 167 (2): 495- 503.
Pratt R G , Shin C , Hick G J . Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion. Geophysical Journal International, 1998, 133 (2): 341- 362.
Shin C , Cha Y H . Waveform inversion in the Laplace domain. Geophysical Journal International, 2008, 173 (3): 922- 931.
Shin C , Cha Y H . Waveform inversion in the Laplace—Fourier domain. Geophysical Journal International, 2009, 177 (3): 1067- 1079.
Sirgue L , Pratt R G . Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics, 2004, 69 (1): 231- 248.
Sun S Y , Hu G H , He B H , et al. Reflection waveform inversion and its application to onshore seismic data. Progress in Geophysics, 2021, 36 (6): 2566- 2572.
Sun Y H, Schuster G T. 1993. Time-domain phase inversion. //63rd Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 684-687.
Tarantola A . Inversion of seismic reflection data in the acoustic approximation. Geophysics, 1984, 49 (8): 1259- 1266.
Virieux J , Operto S . An overview of full-waveform inversion in exploration geophysics. Geophysics, 2009, 74 (6): WCC1- WCC26.
Wang Q Q , Song P , Hua Q F , et al. Full waveform inversion based on Adam algorithm with optimized parameters. Chinese Journal of Geophysics, 2023, 66 (11): 4654- 4663.
Warner M , Guasch L . Adaptive waveform inversion: theory. Geophysics, 2016, 81 (6): R429- R445.
Wu R S , Luo J R , Wu B Y . Seismic envelope inversion and modulation signal model. Geophysics, 2014, 79 (3): WA13- WA24.
Xiong K , Lumley D , Zhou W . Improved seismic envelope full-waveform inversion. Geophysics, 2023, 88 (4): R421- R437.
Zhang P , Wu R S , Han L G . Seismic envelope inversion based on hybrid scale separation for data with strong noises. Pure and Applied Geophysics, 2019, 176 (1): 165- 188.
Zhang P , Han L G , Zhang F J , et al. Wavefield decomposition-based direct envelope inversion and structure-guided perturbation decomposition for salt building. Minerals, 2021, 11 (9): 919
Zhu H , Fomel S . Building good starting models for full-waveform inversion using adaptive matching filtering misfit. Geophysics, 2016, 81 (5): U61- U72.
生昌 , 国新 . 多主频波场的时间阻尼全波形反演. 地球物理学报, 2017, 60 (8): 3229- 3237.
雪豹 , , . 基于频域衰减的时域全波形反演. 地球物理学报, 2016, 59 (10): 3777- 3787.
, 立国 , 江龙 , 等. 基于自适应非稳态相位校正的时频域多尺度全波形反演. 地球物理学报, 2018, 61 (7): 2969- 2988.
冀蜀 , 文奎 , 雨欣 , 等. 基于高阶振幅信息的时间域全波形反演. 地球物理学进展, 2023, 38 (4): 1603- 1609.
振春 , 自颖 , 建平 , 等. 基于波数域梯度场分解的多尺度波形反演方法. 地球物理学报, 2022, 65 (7): 2693- 2703.
展源 , 国忱 , 晓语 . 基于频移目标函数的包络反演方法. 地球物理学进展, 2019, 34 (4): 1481- 1488.
静蕊 , 本锋 . 瞬时相位信息用于时域弹性波全波形反演初始模型建立. 地球物理学进展, 2018, 33 (6): 2435- 2440.
思宇 , 光辉 , 兵红 , 等. 反射波波形反演技术及其陆地资料应用. 地球物理学进展, 2021, 36 (6): 2566- 2572.
倩倩 , , 清峰 , 等. 基于优化参数Adam算法的全波形反演. 地球物理学报, 2023, 66 (11): 4654- 4663.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.

Accesses

Citation

Detail

Sections
Recommended

/