Research on a rapid measurement device for electrical spectrum parameters of formation outcrop

Hui CHENG, Yan LIU, ShaoQuan ZHAN, XiuYing LIAO, GuoHong FU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 765-773.

PDF(2582 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2582 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 765-773. DOI: 10.6038/pg2025II0038

Research on a rapid measurement device for electrical spectrum parameters of formation outcrop

Author information +
History +

Abstract

A spectrum observation device has been designed for measuring the electrical spectrum parameters of outdoor geological outcrops. The signal sending end adopts multi stage current expansion output or voltage power amplification output to increase the load capacity of the sending signal; On the basis of common clock synchronization, the receiver and transmitter improve the anti-interference ability of the device through coherent detection, and use weak signal detection technology to design preamplifiers, signal conditioning and other circuits to improve the signal-to-noise ratio of the channel. By calibrating the observation device using a standard resistance capacitance network model and conducting on-site experiments, spectral observation of underground conductive media was achieved. The results show that the device has signal transmission mode and multi gear switching function, automatic frequency conversion measurement, simple operation, and the observation results play a certain supporting role in selecting exploration methods, establishing geophysical models, and geological interpretation.

Key words

Electrical method / Stratigraphic outcrop / Electrical parameters / Spectrum measurement

Cite this article

Download Citations
Hui CHENG , Yan LIU , ShaoQuan ZHAN , et al . Research on a rapid measurement device for electrical spectrum parameters of formation outcrop[J]. Progress in Geophysics. 2025, 40(2): 765-773 https://doi.org/10.6038/pg2025II0038

References

Chun S H , Chen R J , Chen X S , et al. Development of signal generator for portable electrical impedance analyzer for rock and ore specimens. Progress in Geophysics, 2024, 39 (1): 391- 402.
Fu G H , Tian B , Cheng H , et al. Optimized design of band-pass filter in underwater metal pipe buried depth finder. Progress in Geophysics, 2013, 28 (5): 2753- 2758.
Guo Y M . Application research of DC resistivity method in water resource exploration. Science and Technology of West China, 2012, 11 (5): 24- 25.
He J S . Dual Frequency Induced Polarization Method. Beijing: Higher Education Press, 2006
He L F. 2014. Petro-electricity and its origin: examples from Luobusha ultramafic rock and Upper Yangtze black shale[Ph. D. thesis](in Chinese). Nanjing: Nanjing University.
Hou L. 2018. Research on measurement technology of rock core electrical spectrum of Mixing signals[Master's thesis](in Chinese). Beijing: China University of Petroleum (Beijing).
Huang D , Pei J , Jiang Q Y . Optimized design of twin-T notch filter in wide field electromagnetometer. Geophysical & Geochemical Exploration, 2011, 35 (5): 626- 629.
Huang H R , Wen F , Jia X Z . Design of high-precision DDS signal generator based on FPGA. Microcontrollers & Embedded Systems, 2022, 22 (12): 75- 79.
Huang L S , Jing R Z , Zhang S Y , et al. Study of the complex resistivity of rocks and ores model. Progress in Geophysics, 2014, 29 (6): 2657- 2664.
Pelton W H. 1977. Interpretation of induced polarization and resistivity data[Ph. D. thesis]. Salt Lake City: University of Utah.
Tong M S , Li L , Wang W N , et al. Experimental study on complex resistivity of shaly sands. Well Logging Technology, 2005, 29 (3): 188- 190.
Yao L J , Wang Y B , Jiang W . Optimization design and simulation of butterworth high pass filter. Mechanical & Electrical Engineering Technology, 2023, 52 (2): 292- 296.
Zhang S Z , Zhou J P , Li Y X , et al. Frequency Spectrum Induced Polarization Characteristics, Structural Structure, and Conductive Mineral Composition of Rocks (Minerals). Beijing: Science and Technology of China Press, 1994
Zheng H H , Feng Q N , Shang Z Y . Complex resistance measuring system of rock sample under high temperature and high pressure. Well Logging Technology, 1996, 20 (4): 277- 281.
少恒 , 儒军 , 兴生 , 等. 便携式岩矿石样本电性测量仪信号发生器研制. 地球物理学进展, 2024, 39 (1): 391- 402.
国红 , , , 等. 水下金属管线埋深探测仪带通滤波器的优化设计. 地球物理学进展, 2013, 28 (5): 2753- 2758.
延明 . 直流电阻率法在水资源勘查中的应用研究. 中国西部科技, 2012, 11 (5): 24- 25.
继善 . 双频激电法. 北京: 高等教育出版社, 2006
何兰芳. 2014. 罗布莎超基性岩与上扬子黑色页岩岩石电磁学[博士论文]. 南京: 南京大学.
侯亮. 2018. 混频信号岩心电频谱测量技术研究[硕士论文]. 北京: 中国石油大学(北京).
, , 奇云 . 广域电磁仪中的双T陷波器的优化设计. 物探与化探, 2011, 35 (5): 626- 629.
浩然 , , 兴中 . FPGA的高精度DDS信号发生器设计. 单片机与嵌入式系统应用, 2022, 22 (12): 75- 79.
理善 , 荣中 , 胜业 , 等. 岩矿石模型的复电阻率研究. 地球物理学进展, 2014, 29 (6): 2657- 2664.
茂松 , , 伟男 , 等. 泥质砂岩的复电阻率实验研究. 测井技术, 2005, 29 (3): 188- 190.
林杰 , 耀斌 , . 巴特沃斯高通滤波器的优化设计与仿真实现. 机电工程技术, 2023, 52 (2): 292- 296.
赛珍 , 季平 , 英贤 , 等. 岩(矿)石频谱激电特征与结构构造和导电矿物成分. 北京: 中国科学技术出版社, 1994
和华 , 启宁 , 作源 . 模拟地层高温高压条件的岩样复电阻测量系统. 测井技术, 1996, 20 (4): 277- 281.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(2582 KB)

Accesses

Citation

Detail

Sections
Recommended

/