Feasibility analysis of constructing a regional gravitational model using the method of spherical harmonics analysis

XinXing LI, JinKai FENG, HaoPeng FAN, XiaoGang LIU, Diao FAN, ShanShan LI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 11-24.

PDF(9218 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9218 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 11-24. DOI: 10.6038/pg2025II0047

Feasibility analysis of constructing a regional gravitational model using the method of spherical harmonics analysis

Author information +
History +

Abstract

Technical methods related to the regional gravity fields, include precise geoid determination, downward continuation of gravity anomalies, and construction of regional models, which are greatly faced with challenges, such as low accuracy or efficiency, computation approximations, instability, and lack of criterion. This study introduces the fast implementation technique of ultra-high degree spherical harmonics analysis into the construction of regional gravity field, combined with satellite gravity field models of low to medium frequency spectrum and GNSS/leveling data. By employing a 5400-degree spherical harmonics analysis (SHA), it is possible to achieve a regional gravity field reconstruction with a resolution of 2 arc-minutes and an error less than 1 mGal for gravity anomalies, less than 1 cm for (quasi) geoid, and less than 0.4 arc-seconds for vertical deflection. Meanwhile, SHA can also be used for stable downward continuation of airborne gravity anomalies, which is verified to be more simple, accurate, and stable. Therefore, SHA is worth promoting and applying in the modeling of regional gravity fields and related data processing problems.

Key words

Spherical harmonic analysis / Spherical harmonic synthesis / Downward continuation / Regional gravity field / Geoid / Normal ellipsoid

Cite this article

Download Citations
XinXing LI , JinKai FENG , HaoPeng FAN , et al . Feasibility analysis of constructing a regional gravitational model using the method of spherical harmonics analysis[J]. Progress in Geophysics. 2025, 40(1): 11-24 https://doi.org/10.6038/pg2025II0047

References

Alldredge L R. Rectangular harmonic analysis applied to the geomagnetic field. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 3021- 3026.
Balmino G, Vales N, Bonvalot S, et al. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. Journal of Geodesy, 2012, 86(7): 499- 520.
Dang Y M, Jiang T, Yang Y X, et al. Research progress of geodesy in China (2019-2023). Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1419- 1436.
Ding Z F, Li J C, Xu X Y. Analytical downward continuation of gravity anomaly based on global spherical harmonic expansion iteration. Science of Surveying and Mapping, 2022, 47(10): 8- 14.
Flechtner F, Dahle C, Neumayer K H, et al. 2010. The release 04 CHAMP and GRACE EIGEN gravity field models. //Flechtner F M, Gruber T, Güntner A, et al eds. System Earth via Geodetic-Geophysical Space Techniques. Berlin, Heidelberg: Springer, 41 -58.
Göttl F, Schmidt M, Seitz F. Mass-related excitation of polar motion: an assessment of the new RL06 GRACE gravity field models. Earth, Planets and Space, 2018, 70(1): 195
Haines G V. Spherical cap harmonic analysis. Journal of Geophysical Research: Solid Earth, 1985, 90(B3): 2583- 2591.
Hirt C, Claessens S, Fecher T, et al. New ultrahigh-resolution picture of Earth's gravity field. Geophysical Research Letters, 2013, 40(16): 4279- 4283.
Hirt C, Rexer M. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models-available as gridded data and degree-10, 800 spherical harmonics. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 103- 112.
Hofmann-Wellenhof B, Moritz H. 2006. Physical Geodesy. 2nd ed. Vienna: Springer.
Huang M T, Liu M, Deng K L, et al. Analytical solution of downward continuation for airborne gravimetry based on upward continuation method. Chinese Journal of Geophysics, 2018, 61(12): 4746- 4757.
Huang M T, Deng K L, Wu T Q, et al. Rigorous modification model of upward continuation and its applications on the downward continuation of gravity anomaly. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 41- 52.
Ince E S, Barthelmes F, Reißland S, et al. ICGEM-15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth System Science Data, 2019, 11(2): 647- 674.
Ince E S, Abrykosov O, Förste C, et al. Forward gravity modelling to augment high-resolution combined gravity field models. Surveys in Geophysics, 2020, 41(4): 767- 804.
Jiang T, Li J C, Dang Y M, et al. Regional gravity field modeling based on rectangular harmonic analysis. Science China Earth Sciences, 2014, 57(7): 1637- 1644.
Jiang T, Xiao X N, Dang Y M, et al. Evaluation of the external accord accuracy of airborne gravity data with upward continuation. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 567- 574.
Li J C. The recent Chinese terrestrial digital height datum model: gravimetric quasi-geoid CNGG2011. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 651- 660. 651-660, 669
Li X X. 2013. Building of an ultra-high-degree geopotential model [Master's thesis](in Chinese). Zhengzhou: PLA Information Engineering University.
Liang W, Xu X Y, Li J C, et al. 2023. Research on determination of gravity field models in regional area using airborne gravity data and reference model. Geomatics and Information Science of Wuhan University (in Chinese). https://doi.org/10.13203/j.whugis20230002.
Liu M, Huang M T, Ouyang Y Z, et al. Test and analysis of downward continuation models for airborne gravity data with regard to the effect of topographic height. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 521- 530.
Liu X G, Sun Z M, Guan B, et al. Downward continuation of airborne gravimetry data based on improved poisson integral iteration method. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1188- 1195.
Lu Y, Xu H Z. The regional model of high-order gravitational field and the potential coefficient model of the Qinghai-Tibet region. Chinese Journal of Geophysics, 1994, 37(4): 487- 498.
Ma J, Zhal Z H, Feng C Q, et al. Optimization algorithm for analytical downward continuation based onimproved radial derivative. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1650- 1660.
Ning J S, Luo Z C, Li J C. Present situations and technical modes for refining provincial (municipal) geoid in China. Journal of Geodesy and Geodynamics, 2004, 24(1): 4- 8.
Ouyang Y Z, Deng K L, Huang M T, et al. The choice of integral radius and its far-zone effects in the continuation of the gravity anomaly. Hydrographic Surveying and Charting, 2011, 31(4): 5- 7. 5-7, 12
Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 2012, 117(B4): B04406
Rapp R H, Pavlis N K. The development and analysis of geopotential coefficient models to spherical harmonic degree 360. Journal of Geophysical Research: Solid Earth, 1990, 95(B13): 21885- 21911.
Rexer M, Hirt C. Ultra-high-degree surface spherical harmonic analysis using the gauss-legendre and the driscoll/healy quadrature theorem and application to planetary topography models of earth, mars and moon. Surveys in Geophysics, 2015, 36(6): 803- 830.
Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 2014, 346(6205): 65- 67.
Sneeuw N. Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective. Geophysical Journal International, 1994, 118(3): 707- 716.
Thébault E, Schott J J, Mandea M. Revised spherical cap harmonic analysis (R-SCHA): validation and properties. Journal of Geophysical Research: Solid Earth, 2006, 111(B1): B01102
Tian J L, Li X X, Wu X P, et al. Fast realization of ultra-high-degree geopotential model by improved least-squares method. Acta Geodaetica et Cartographica Sinica, 2018, 47(11): 1437- 1445.
Wang K, Zhang C D, Wu X, et al. Construction and quas-stable analysis of topographic/isostatic potential coefficients of gravity field. Chinese Journal of Geophysics, 2014, 57(3): 760- 769.
Wang X T, Xia Z R, Shi P, et al. A comparison of different downward continuation methods for airborne gravity data. Chinese Journal of Geophysics, 2004, 47(6): 1017- 1022.
Wieczorek M A, Meschede M. SHTools: tools for working with spherical harmonics. Geochemistry, Geophysics, Geosystems, 2018, 19(8): 2574- 2592.
Wu W J. On the application of geomagnetic spherical harmonic analysis method in local areas. Chinese Science Bulletin, 1984, 29(16): 999- 1003.
Wu X P. Point-mass model of local gravity field. Acta Geodaetica et Cartographica Sinica, 1984, 13(4): 249- 258.
Xu H Z, Lu Y, Zhang K F. A tailored method for altimetry-gravimetry boundary value problems. Acta Geodaetica et Cartographica Sinica, 2002, 31(S1): 12- 15.
Xu W Y, Qu J M, Du A M. Geomagnetic field modelling for the globe and a limited region. Progress in Geophysics, 2011, 26(2): 398- 415.
Zhai Z H, Sun Z M. Continuation model construction and application analysis of local gravity field based on least square collocation. Chinese Journal of Geophysics, 2009, 52(7): 1700- 1706.
Zhao Y Q, Li J C, Xu X Y, et al. Determination of static gravity field model by using satellite data of GOCE andGRACE. Chinese Journal of Geophysics, 2023, 66(6): 2322- 2336.
Zhu C, Guo J Y, Gao J Y, et al. Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea: SCSGA V1. 0. Journal of Geodesy, 2020, 94(5): 50
Zingerle P, Pail R, Gruber T, et al. The combined global gravity field model XGM2019e. Journal of Geodesy, 2020, 94(7): 66
亚民, , 元喜, 等. 中国大地测量研究进展(2019—2023). 测绘学报, 2023, 52(9): 1419- 1436.
子凡, 建成, 新禹. 一种重力异常向下延拓的球谐分析迭代方法研究. 测绘科学, 2022, 47(10): 8- 14.
谟涛, , 凯亮, 等. 基于向上延拓的航空重力向下解析延拓解. 地球物理学报, 2018, 61(12): 4746- 4757.
谟涛, 凯亮, 太旗, 等. 重力异常向上延拓严密改化模型及向下延拓应用. 测绘学报, 2022, 51(1): 41- 52.
, 学年, 亚民, 等. 航空重力向上延拓的外部精度评估. 测绘学报, 2018, 47(5): 567- 574.
建成. 最新中国陆地数字高程基准模型: 重力似大地水准面CNGG2011. 测绘学报, 2012, 41(5): 651- 660. 651-660, 669
李新星. 2013. 超高阶地球重力场模型的构建[硕士论文]. 郑州: 解放军信息工程大学.
梁伟, 徐新禹, 李建成, 等. 2023. 联合先验模型和航空重力数据构建适用于局部区域的超高阶重力场模型. 武汉大学学报(信息科学版), https://doi.org/10.13203/j.whugis20230002.
, 谟涛, 欧阳 永忠, 等. 顾及地形效应的重力向下延拓模型分析与检验. 测绘学报, 2016, 45(5): 521- 530.
晓刚, 中苗, , 等. 航空重力测量数据向下延拓的改进Poisson积分迭代法. 测绘学报, 2018, 47(9): 1188- 1195.
, 厚泽. 区域高阶重力场模型与青藏地区局部位系数模型. 地球物理学报, 1994, 37(4): 487- 498.
, 振和, 长强, 等. 基于改进径向导数的解析向下延拓优化算法. 测绘学报, 2023, 52(10): 1650- 1660.
津生, 志才, 建成. 我国省市级大地水准面精化的现状及技术模式. 大地测量与地球动力学, 2004, 24(1): 4- 8.
欧阳 永忠, 凯亮, 谟涛, 等. 重力异常延拓计算积分半径的选择及远区效应. 海洋测绘, 2011, 31(4): 5- 7. 5-7, 12
家磊, 新星, 晓平, 等. 超高阶重力场模型最小二乘快速实现. 测绘学报, 2018, 47(11): 1437- 1445.
, 传定, , 等. 地形/均衡重力场模型构制及其拟稳分析. 地球物理学报, 2014, 57(3): 760- 769.
兴涛, 哲仁, , 等. 航空重力测量数据向下延拓方法比较. 地球物理学报, 2004, 47(6): 1017- 1022.
文京. 关于地磁球谐分析方法应用于局部地区的问题. 科学通报, 1984, 29(16): 999- 1003.
晓平. 局部重力场的点质量模型. 测绘学报, 1984, 13(4): 249- 258.
厚泽, , 克非. 测高-重力边值问题的局部剪裁解. 测绘学报, 2002, 2002(S1): 12- 15.
文耀, 加明, 爱民. 地磁场全球建模和局域建模. 地球物理学进展, 2011, 26(2): 398- 415.
振和, 中苗. 基于配置法的局部重力场延拓模型构建与应用分析. 地球物理学报, 2009, 52(7): 1700- 1706.
永奇, 建成, 新禹, 等. 利用GOCE和GRACE卫星观测数据确定静态重力场模型. 地球物理学报, 2023, 66(6): 2322- 2336.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(9218 KB)

Accesses

Citation

Detail

Sections
Recommended

/