Overview of seismic exploration for hot dry rock reservoirs

Ming MA, Feng MA

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 460-471.

PDF(11126 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11126 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 460-471. DOI: 10.6038/pg2025II0048

Overview of seismic exploration for hot dry rock reservoirs

Author information +
History +

Abstract

As a significant occurrence of geothermal resources, the energy stored in subsurface hot dry rock reservoirs can be extracted via Enhanced Geothermal System (EGS). Highly efficient exploration for deep hot dry rock would assist the achievement of energy transition and dual carbon goals. Some benefits of seismic prospecting include high resolution, super deep exploration and controllable deployment, which means this technique cannot be replaced in meticulous depiction of reservoirs and identification of natural fractures zone. So as to investigate the updated progress in seismic exploration for hot dry rock and provide certain valuable references, we have classified the application of active source seismic methods in terms of different strategies. Data processing, interpretation and inversion techniques are utilized in accurate imaging of structures, estimation of rock physical parameters, and dynamic monitoring of EGS exploitation. Besides, we verified that integrated seismic and other geophysical exploration can promote the exactitude in determination of well location and receivers' layout. The summarized concepts in this paper may be useful for researchers to acquire the information of seismic methods for hot dry rock prospecting effectively.

Key words

Hot dry rock / Seismic exploration with active source / Temperature field inversion

Cite this article

Download Citations
Ming MA , Feng MA. Overview of seismic exploration for hot dry rock reservoirs[J]. Progress in Geophysics. 2025, 40(2): 460-471 https://doi.org/10.6038/pg2025II0048

References

Aladro Y H , González-Escobar M , Reyes-Martinez C S , et al. Remarks on a sediment-hosted geothermal system in Cerro Prieto, México, with a seismic reflection profile. Geothermics, 2022, 103: 102427
Aleardi M , Mazzotti A , Tognarelli A , et al. Seismic and well log characterization of fractures for geothermal exploration in hard rocks. Geophysical Journal International, 2015, 203 (1): 270- 283.
Asrillah A , Abdullah A , Bauer K , et al. Fracture characterisation using 3-D seismic reflection data for advanced deep geothermal exploration in the NE German Basin. Geothermics, 2024, 116: 102833
Barison E , Poletto F , Böhm G , et al. Processing and interpretation of seismic reflection data from the Los Humeros super-hot geothermal system. Geothermics, 2023, 113: 102771
Bredesen K , Dalgaard E , Mathiesen A , et al. Seismic characterization of geothermal sedimentary reservoirs: A field example from the Copenhagen area, Denmark. Interpretation, 2020, 8 (2): T275- T291.
Brown D W , Duchane D V , Heiken G , et al. Mining the Earth's Heat: Hot Dry Rock Geothermal Energy. Berlin, Heidelberg: Springer, 2012
Casini M , Ciuffi S , Fiordelisi A , et al. Results of a 3D seismic survey at the Travale (Italy) test site. Geothermics, 2010, 39 (1): 4- 12.
Chen X. 2016. Research on the application of geophysical methods in hot dry rock prospecting[Ph. D. thesis](in Chinese). Changchun: Jilin University.
Deng Y F , Li Z W , Huang S , et al. Structure of the Gonghe Sedimentary Basin in the northeastern Tibetan Plateau: evidence from teleseismic P waves recorded by a dense seismic array. Geophysical Journal International, 2023, 235 (2): 1697- 1711.
Fehler M , Pearson C . Cross-hole seismic surveys: Applications for studying subsurface fracture systems at a hot dry rock geothermal site. Geophysics, 1984, 49 (1): 37- 45.
Fu G Q , Peng S P , Wang R Z , et al. Seismic prediction and evaluation techniques for hot dry rock exploration and development. Journal of Geophysics and Engineering, 2022, 19 (4): 694- 705.
Gao W L , Zhao J T , Wang H W . Rock physics experiment and rock physical modeling of hot dry rock under high temperature. Journal of Mining Science and Technology, 2023, 8 (6): 758- 767.
He D F , Shan S Q , Zhang Y Y , et al. 3-D geologic architecture of Xiong'an New Area: Constraints from seismic reflection data. Science China Earth Sciences, 2018, 61 (8): 1007- 1022.
Hloušek F , Hellwig O , Buske S . Three-dimensional focused seismic imaging for geothermal exploration in crystalline rock near Schneeberg, Germany. Geophysical Prospecting, 2015, 63 (4): 999- 1014.
Hu H , Zheng Y C , Huang L J , et al. Imaging steeply dipping faults using angle-controlled decoupled elastic reverse-time migration of multicomponent seismic data. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4500908
Jaya M S , Shapiro S A , Kristinsdóttir L H , et al. Temperature dependence of seismic properties in geothermal rocks at reservoir conditions. Geothermics, 2010, 39 (1): 115- 123.
Jia Y Y , Chang Q , Wang Y W , et al. Geothermal energy development amid carbon peak and neutrality in China. Green Petroleum & Petrochemicals, 2021, 6 (6): 5- 9.
Jusri T , Bertani R , Buske S . Advanced three-dimensional seismic imaging of deep supercritical geothermal rocks in Southern Tuscany. Geophysical Prospecting, 2019, 67 (2): 298- 316.
Kana J D , Djongyang N , Raïdandi D , et al. A review of geophysical methods for geothermal exploration. Renewable and Sustainable Energy Reviews, 2015, 44: 87- 95.
Khair H A , Cooke D , Hand M . Seismic mapping and geomechanical analyses of faults within deep hot granites, a workflow for enhanced geothermal system projects. Geothermics, 2015, 53: 46- 56.
Krawczyk C M , Stiller M , Bauer K , et al. 3-D seismic exploration across the deep geothermal research platform Groß Schönebeck north of Berlin/Germany. Geothermal Energy, 2019, 7 (1): 15
Lüschen E , Wolfgramm M , Fritzer T , et al. 3D seismic survey explores geothermal targets for reservoir characterization at Unterhaching, Munich, Germany. Geothermics, 2014, 50: 167- 179.
Lüschen E , Görne S , von Hartmann H , et al. 3D seismic survey for geothermal exploration in crystalline rocks in Saxony, Germany. Geophysical Prospecting, 2015, 63 (4): 975- 989.
Li G S , Wu X G , Song X Z , et al. Status and challenges of hot dry rock geothermal resource exploitation. Petroleum Science Bulletin, 2022, 7 (3): 343- 364.
Lin P , Peng S P , Xiang Y , et al. Diffraction imaging of discontinuities using migrated dip-angle gathers. Geophysics, 2023a, 88 (1): V21- V32.
Lin P , Peng S P , Xiang Y , et al. Regularized low-rank approximation method for diffraction enhancement. IEEE Geoscience and Remote Sensing Letters, 2023b, 20: 3002305
Lin W J , Wang G L , Shao J L , et al. Distribution and exploration of hot dry rock resources in China: progress and inspiration. Acta Geologica Sinica, 2021, 95 (5): 1366- 1381.
Lu J M , Wang J G . The Principle of Seismic Exploration. 3rd ed Dongying: China University of Petroleum Press, 2011
Ma M , Zhang R , Yuan S Y . Multichannel impedance inversion for nonstationary seismic data based on the modified alternating direction method of multipliers. Geophysics, 2019, 84 (1): A1- A6.
Ma M , Bao Q Z . Diffraction wave separation and imaging with deep learning network based on Encoder-Decoder framework. Oil Geophysical Prospecting, 2023, 58 (1): 56- 64.
Peña-Domínguez J G , Negrete-Aranda R , Neumann F , et al. Heat flow and 2D multichannel seismic reflection survey of the Devil's Hole geothermal reservoir in the Wagner basin, northern Gulf of California. Geothermics, 2022, 103: 102415
Peng H J , Zhao J T , Cui R . Predicting the temperature field of hot dry rocks by the seismic inversion method. Energies, 2023, 16 (4): 1865
Salaun N , Toubiana H , Mitschler J B , et al. High-resolution 3D seismic imaging and refined velocity model building improve the image of a deep geothermal reservoir in the Upper Rhine Graben. The Leading Edge, 2020, 39 (12): 857- 863.
Salaun N, Toubiana H, Mitschler J, et al. 2021. High Resolution 3D seismic image from geothermal, jointly designed acquisition and imaging. //2nd Geoscience & Engineering in Energy Transition Conference. European Association of Geoscientists & Engineers, 1-5, doi: 10.3997/2214-4609.202121004.
Sena-Lozoya E B , González-Escobar M , Gómez-Arias E , et al. Seismic exploration survey northeast of the Tres Virgenes Geothermal Field, Baja California Sur, Mexico: a new geothermal prospect. Geothermics, 2020, 84: 101743
Soma N , Niitsuma H , Baria R . Reflection technique in time-frequency domain using multicomponent acoustic emission signals and application to geothermal reservoirs. Geophysics, 2002, 67 (3): 928- 938.
Sun D S , Lei W , Li H T , et al. Application of high resolution seismic exploration method to the prospecting of geothermal resources. Site Investigation Science and Technology, 2002, (6): 55- 59.
Sun X Z , Li B X , Wang Z L . Exploration of the possibility of hot dry rock occurring in the Qinghai Gonghe Basin. Hydrogeology & Engineering Geology, 2011, 38 (2): 119- 124. 119-124, 129
Thiel S, Peacock J, Heinson G S, et al. 2011. Electromagnetic monitoring of stimulated hot dry rock systems-modelling and examples from South Australia. //AGU Fall Meeting Abstracts. American Geophysical Union, H21E-1157.
Wang D F , Cheng J F . China's dry-hot rock resources present situation and prospect of exploration technology under carbon peaking and carbon neutrality background. Coal Geology of China, 2023, 35 (4): 43- 49.
Wang G L , Zhang W , Lin W J , et al. Research on formation mode and development potential of geothermal resources in Beijing-Tianjin-Hebei region. Geology in China, 2017, 44 (6): 1074- 1085.
Wang J Y , Hu S B , Pang Z H , et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Science & Technology Review, 2012, 30 (32): 25- 31.
Wang K , Zhang J , Bai D W , et al. Geothermal-geological model of Xiong'an new area: evidence from geophysics. Geology in China, 2021, 48 (5): 1453- 1468.
Wang K. 2022. Study of the geothermal geological structure and deep geothermal source mechanism of Xiong'an New Area based on comprehensive geophysical exploration[Ph. D. thesis](in Chinese). Changchun: Jilin University.
Wang R Z , Wang J K , Li H D , et al. A study on the acquisition technology for weak seismic signals from deep geothermal reservoirs. Energies, 2023, 16 (6): 2751
Wei Y J , Ba J , Carcione J M , et al. Temperature, differential pressure, and porosity inversion for ultradeep carbonate reservoirs based on 3D rock-physics templates. Geophysics, 2021, 86 (3): M77- M89.
Wright P M , Ward S H , Ross H P , et al. State-of-the-art geophysical exploration for geothermal resources. Geophysics, 1985, 50 (12): 2666- 2696.
Xie W P , Lu R , Zhang S S , et al. Progress in hot dry rock exploration and a discussion on development technology in the Gonghe basin of Qinghai. Petroleum Drilling Techniques, 2020, 48 (3): 77- 84.
Xue J Q , Gan B , Li B X , et al. Geological-geophysical characteristics of enhanced geothermal systems (hot dry rocks) in Gonghe-guide basin. Geophysical & Geochemical Exploration, 2013, 37 (1): 35- 41.
Yang Y , Jiang Z H , Yue J H , et al. Discussion on application of geophysical methods in hot dry rock (HDR) exploration. Progress in Geophysics, 2019, 34 (4): 1556- 1567.
Yue H Y , Wang K , Zhang J , et al. High-precision imaging technology of deep reflection seismic in Xiong'an new area and its surroundings. Oil Geophysical Prospecting, 2022, 57 (4): 855- 869.
Zhang J , Yang Y , Wang K , et al. Application and achievements of comprehensive geophysics prospecting in three-dimensional geological structure exploration in Xiong'an new area. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44 (6): 742- 750.
Zhang R , Castagna J . Seismic sparse-layer reflectivity inversion using basis pursuit decomposition. Geophysics, 2011, 76 (6): R147- R158.
Zhang Y , Feng J Y , He Z L , et al. Classification of geothermal systems and their formation key factors. Earth Science Frontiers, 2017, 24 (3): 190- 198.
Zhao X Y , Zeng Z F , Wu Z W , et al. Delineating the area of HDR in Songliao basin using geophysical methods. Progress in Geophysics, 2015, 30 (6): 2863- 2869.
Zheng Y K , Wang Y B . High-resolution reflection seismic imaging to reveal subsurface geologic structures of a deep geothermal reservoir. Geophysics, 2023, 88 (5): WB37- WB43.
Zhou Z Y , Liu S L , Liu J X . Study on the characteristics and development strategies of geothermal resources in China. Journal of Natural Resources, 2015, 30 (7): 1210- 1221.
Zollo A , Maercklin N , Vassallo M , et al. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophysical Research Letters, 2008, 35 (12): L12306
陈雄. 2016. 地球物理方法在干热岩勘查中的应用研究[博士论文]. 长春: 吉林大学.
万里 , 惊涛 , 化伟 . 高温作用下干热岩岩石物理实验及岩石物理建模研究. 矿业科学学报, 2023, 8 (6): 758- 767.
国家能源局 . NB/T 10097-2018地热能术语. 北京: 中国石化出版社, 2018
艳雨 , , 俞文 , 等. 我国地热能开发利用现状及双碳背景下的发展趋势. 石油石化绿色低碳, 2021, 6 (6): 5- 9.
根生 , 晓光 , 先知 , 等. 干热岩地热资源开采技术现状与挑战. 石油科学通报, 2022, 7 (3): 343- 364.
文静 , 贵玲 , 景力 , 等. 我国干热岩资源分布及勘探: 进展与启示. 地质学报, 2021, 95 (5): 1366- 1381.
基孟 , 永刚 . 地震勘探原理. 3版 东营: 中国石油大学出版社, 2011
, 乾宗 . 利用Encoder-Decoder框架的深度学习网络实现绕射波分离及成像. 石油地球物理勘探, 2023, 58 (1): 56- 64.
党生 , , 洪涛 , 等. 高分辨率地震勘探在地热资源勘查中的应用. 勘察科学技术, 2002, (6): 55- 59.
知新 , 百祥 , 志林 . 青海共和盆地存在干热岩可能性探讨. 水文地质工程地质, 2011, 38 (2): 119- 124. 119-124, 129
丹凤 , 剑峰 . "双碳"背景下我国干热岩资源勘查技术现状及展望. 中国煤炭地质, 2023, 35 (4): 43- 49.
贵玲 , , 文静 , 等. 京津冀地区地热资源成藏模式与潜力研究. 中国地质, 2017, 44 (6): 1074- 1085.
集旸 , 圣标 , 忠和 , 等. 中国大陆干热岩地热资源潜力评估. 科技导报, 2012, 30 (32): 25- 31.
, , 大为 , 等. 雄安新区地热地质模型探究: 来自地球物理的证据. 中国地质, 2021, 48 (5): 1453- 1468.
王凯. 2022. 基于综合地球物理探测的雄安新区地热地质结构及深部热源机制研究[博士论文]. 长春: 吉林大学.
文苹 , , 盛生 , 等. 青海共和盆地干热岩勘查进展及开发技术探讨. 石油钻探技术, 2020, 48 (3): 77- 84.
薛建球, 甘斌, 李百祥, 等. 2013. 青海共和—贵德盆地增强型地热系统(干热岩)地质—地球物理特征. 物探与化探, 37(1): 35-41.
, 志海 , 建华 , 等. 干热岩勘探过程中地球物理方法技术应用探讨. 地球物理学进展, 2019, 34 (4): 1556- 1567.
航羽 , , , 等. 雄安新区及周边深反射地震高精度成像技术. 石油地球物理勘探, 2022, 57 (4): 855- 869.
, , , 等. 综合地球物理在雄安新区三维地质结构探测中的应用与成果. 物探化探计算技术, 2022, 44 (6): 742- 750.
, 建赟 , 治亮 , 等. 地热系统类型划分与主控因素分析. 地学前缘, 2017, 24 (3): 190- 198.
雪宇 , 昭发 , 真玮 , 等. 利用地球物理方法圈定松辽盆地干热岩靶区. 地球物理学进展, 2015, 30 (6): 2863- 2869.
总瑛 , 世良 , 金侠 . 中国地热资源特点与发展对策. 自然资源学报, 2015, 30 (7): 1210- 1221.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(11126 KB)

Accesses

Citation

Detail

Sections
Recommended

/