3D prestack fracture prediction method and technology based on high precision azimuth gradient of division-directional compressional-wave

JunYing LIU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1463-1472.

PDF(8133 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8133 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1463-1472. DOI: 10.6038/pg2025II0054

3D prestack fracture prediction method and technology based on high precision azimuth gradient of division-directional compressional-wave

Author information +
History +

Abstract

Due to the absence of incident direction and azimuth direction seismic information in post-stack seismic data, conventional post-stack methods cannot use anisotropic variation characteristics to predict fractures. The response of heterogeneous fracture wave field is bidirectional in both incident direction and azimuthing direction, and its response is weak. Generally, it is hidden in the strongly reflected wave field information, and its sensitivity is not easy to be detected by conventional prestack fracture prediction method. The application effect of conventional prestack fracture prediction method is not ideal, and fracture is one of the difficulties in seismic prediction. Therefore, a 3D prestack fracture prediction method based on azimuthal radially-split gradient variation is developed in this paper. The 3D prestack seismic response amplitude equation based on azimuthal impedance factor and azimuthal anisotropy factor varying with the incident angle is derived, and based on that, the quadratic function of 3D prestack seismic response amplitude of one-variable with the sine square of the incident angle is derived at a certain azimuthal angle, and then, the derivative is taken and it gives a first order amplitude gradient equation of one-variable with the sine square of the incident angle, it is proved that the variation of the fixed azimuthal amplitude gradient is linear, the azimuthal anisotropy factor is the main factor leading to the variation of fixed azimuthal amplitude gradient, and its influence enhances with the increase of incident angle, the larger the incidence angle, the greater the anisotropy effect. It is proved that the amplitude variation with incidence-angle in fixed azimuthal direction has piecewise partitioning property, and the amplitude gradient values of different sections can be obtained by linear partitioning of the incident area, and then the amplitude gradient variation with azimuthal change can be used to predict stratum fracture with 3D prestack seismic gather. A new prestack crack prediction software is developed by programming the theoretical method of this paper. Good application effect has been achieved in the actual work area. The results show that this method is accurate and reliable, it can solve the problem of stratum microfracture prediction, and it can provide strong support for the exploration and development of complex fracture reservoirs.

Key words

Azimuthal impedance factor / Azimuthal anisotropy factor / Azimuthal amplitude gradient fuction / Segmented subdivision / Prestack fracture prediction

Cite this article

Download Citations
JunYing LIU. 3D prestack fracture prediction method and technology based on high precision azimuth gradient of division-directional compressional-wave[J]. Progress in Geophysics. 2025, 40(4): 1463-1472 https://doi.org/10.6038/pg2025II0054

References

Chen Q X, Cao J X, Su Z D, et al. Multi-scale fracture prediction method based on OVT domain seismic data. Progress in Geophysics, 2023, 38(3): 1084- 1094.
Fan R, Zeng T, Lei K H, et al. Application of 3D "fault fracture reservoirs" engraving technology to the Xujiahe formation in the northeastern Sichuan Basin. Geophysical Prospecting for Petroleum, 2023, 62(2): 336- 344.
Gan Q G, Gao Z P. Application of AVA fracture detection technique. Natural Gas Industry, 2005, 25(5): 42- 43.
Gao C Y, Zhao F H, Gao L F, et al. The methods of fracture prediction based on structural strain analysis and its application. Journal of Geomechanics, 2023, 29(1): 21- 33.
Gong H L. Geophysical characteristics of Ordovician carbonate rock, central Tarim Basin. Natural Gas Geoscience, 2009, 20(1): 138- 142.
Gou Q Y, Ding P B, Ling W T, et al. Seismic physical modeling and sensitive attribute analysis of fractures in the shale layer in the southern Sichuan Basin. Geophysical Prospecting for Petroleum, 2023, 62(2): 314- 326.
Huang W C, Yang C C, Wang Y F. The application of pre-stack seismic data in predicting the fractured reservoir. Progress in Geophysics, 2007, 22(5): 1602- 1606.
Li C, Zhang D, Zhu D S, et al. Research and application of crack detection technology based on wide-azimuth 3D seismic data. Progress in Geophysics, 2022, 37(3): 1041- 1046.
Li C H, Zhao L, Liu B, et al. Research status and development trend of fractures in carbonate reservoir. Bulletin of Geological Science and Technology, 2021, 40(4): 31- 48.
Li F Y, Wang T, Zeng Q B, et al. Application of high-definition likelihood attributes based on structure orientation in the prediction of deep faults in Baiyun Sag. Geophysical Prospecting for Petroleum, 2023, 62(1): 163- 172.
Li T, Mavko G. 1996. Fracture signatures on P-wave AVOZ. //Proceedings of 1996 SEG Annual Meeting. Denver: SEG, 1818-1821.
Li W, Chen G, Wang D X, et al. Identification of micro fault opening in sweet-spot member of Lucaogou Formation in Jimusar Sag of Junggar Basin by maximum positive and negative curvature. Oil Geophysical Prospecting, 2022, 57(1): 184- 193.
Liu J Y, Yong X S, Zhang J, et al. Oil and gas detection method and technique of HTI fracture media based on the anisotropic variation of azimuth-amplitude gradient in Prestack Omni-directional incidence-angular gather. Chinese Journal of Geophysics, 2021, 64(10): 3807- 3816.
Liu X J, Chen Z Q, Chen C, et al. Fracture prediction method based on Fourier series of azimuthal elastic impedance. Oil Geophysical Prospecting, 2022, 57(2): 423- 433.
Ming J, Xia Q L, Zhou D H, et al. Study of seismic prediction technology for buried hill fractured reservoir of Jinzhounan oilfield. China Petroleum Exploration, 2014, 19(1): 60- 64.
Qin Q R. 1997. Quantitative prediction of fracture distribution in volcanic reservoir in 7th area, Karamay Oil field. //Proceedings of the 15th World Petroleum Congress.
Qiu Z H, Zhou L, Chen X, et al. Identification of strike-slip faults in Gaoshiti-Moxi area of Sichuan Basin. Oil Geophysical Prospecting, 2022, 57(3): 647- 655.
Tian X, Song Z H, Tian Z K, et al. Azimuthal variation of seismic amplitude for brittleness and fracture parameter of gas-bearing shale reservoir. Progress in Geophysics, 2023, 38(3): 1191- 1203.
Wang J H, Zhang J M, Wu G C. Wide-azimuth Young's modulus inversion and fracture prediction: an example of H structure in Bozhong sag. Oil Geophysical Prospecting, 2021, 56(3): 593- 602.
Wen S S, Zhang D J, Ling W T, et al. Local-extremum-searching curvature algorithm and its application to fracture prediction in Luzhou. Progress in Geophysics, 2023, 38(6): 2599- 2610.
Xiong X J, Zhang X, Zhang B J, et al. Fracture prediction technology on prestack narrow azimuth data with fracture fusion analysis. Oil Geophysical Prospecting, 2021, 56(5): 1150- 1156.
Ye D, Xi Y X, Cheng Z G, et al. Application of fracture prediction technology in shale-oil exploration in Mahu area. Oil Geophysical Prospecting, 2022, 57(S1): 177- 182.
Yin C, Peng H, Zhao H, et al. Identifying small fault and overlap strip of thin sand body based on seismic multi-attribute analysis. Geophysical Prospecting for Petroleum, 2022, 61(4): 625- 634.
Zhou X Y, Gan L D, Yang H, et al. A joint inversion method using amplitude and velocity anisotropy. Oil Geophysical Prospecting, 2020, 55(5): 1084- 1091.
秋旭, 俊兴, 照东, 等. 基于OVT域地震数据的多尺度裂缝预测方法及应用. 地球物理学进展, 2023, 38(3): 1084- 1094.
, , 克辉, 等. 川东北地区须家河组"断缝体"气藏立体雕刻技术及应用. 石油物探, 2023, 62(2): 336- 344.
其刚, 志平. 宽方位AVA裂缝检测技术应用研究. 天然气工业, 2005, 25(5): 42- 43.
晨阳, 福海, 莲凤, 等. 基于构造应变分析的裂缝预测方法及其应用. 地质力学学报, 2023, 29(1): 21- 33.
洪林. 塔中地区奥陶系碳酸盐岩岩石地球物理特征研究. 天然气地球科学, 2009, 20(1): 138- 142.
其勇, 拼搏, 玮桐, 等. 川南页岩地层裂缝地震物理模拟及敏感属性分析. 石油物探, 2023, 62(2): 314- 326.
伟传, 长春, 彦飞. 利用叠前地震数据预测裂缝储层的应用研究. 地球物理学进展, 2007, 22(5): 1602- 1606.
, , 德胜, 等. 基于宽方位三维地震数据的裂缝检测技术研究及应用. 地球物理学进展, 2022, 37(3): 1041- 1046.
长海, , , 等. 碳酸盐岩裂缝研究进展及发展趋势. 地质科技通报, 2021, 40(4): 31- 48.
飞跃, , 清波, 等. 基于构造导向的高清似然属性在白云凹陷深层断裂预测中的应用. 石油物探, 2023, 62(1): 163- 172.
, , 东学, 等. 利用最大正、负曲率识别准噶尔盆地吉木萨尔凹陷芦草沟组甜点段微小断层开启性. 石油地球物理勘探, 2022, 57(1): 184- 193.
军迎, 学善, , 等. 基于叠前全方位角道集方位振幅梯度各向异性变化的HTI裂缝介质油气检测方法与技术. 地球物理学报, 2021, 64(10): 3807- 3816.
晓晶, 祖庆, , 等. 方位弹性阻抗傅里叶级数裂缝预测方法. 石油地球物理勘探, 2022, 57(2): 423- 433.
, 庆龙, 东红, 等. 锦州南油田潜山裂缝储层地震预测技术研究. 中国石油勘探, 2014, 19(1): 60- 64.
泽华, , , 等. 四川盆地高石梯-磨溪地区走滑断层识别. 石油地球物理勘探, 2022, 57(3): 647- 655.
, 志华, 治康, 等. 含气页岩储层脆性及裂缝参数方位地震反演方法研究与应用. 地球物理学进展, 2023, 38(3): 1191- 1203.
建花, 金淼, 国忱. 宽方位杨氏模量反演和裂缝预测方法及应用——以渤中凹陷H构造潜山勘探为例. 石油地球物理勘探, 2021, 56(3): 593- 602.
山师, 洞君, 玮桐, 等. 局部极值搜索的曲率算法及其在泸州地区页岩气裂缝预测中的应用. 地球物理学展, 2023, 38(6): 2599- 2610.
晓军, , 本健, 等. 裂缝融合分析的窄方位叠前裂缝预测技术. 石油地球物理勘探, 2021, 56(5): 1150- 1156.
, 宇霄, 志国, 等. 裂缝预测技术在玛湖地区页岩油勘探中的应用. 石油地球物理勘探, 2022, 57(S1): 177- 182.
, , , 等. 薄砂体重叠带与小断层的地震多属性联合识别方法研究. 石油物探, 2022, 61(4): 625- 634.
晓越, 利灯, , 等. 利用叠前振幅和速度各向异性的联合反演方法. 石油地球物理勘探, 2020, 55(5): 1084- 1091.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(8133 KB)

Accesses

Citation

Detail

Sections
Recommended

/