Numerical simulation investigation and geological guided inversion method research of electromagnetic wave resistivity instruments for LWD in anisotropic formations

XiaoLei CHEN, BaoYin LIU, Jun ZHOU, ZhongQing ZHANG, ZhengZhi ZHOU, BaoHua MAO, Juan ZHANG, Yue WU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 188-198.

PDF(8265 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8265 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 188-198. DOI: 10.6038/pg2025II0063

Numerical simulation investigation and geological guided inversion method research of electromagnetic wave resistivity instruments for LWD in anisotropic formations

Author information +
History +

Abstract

The electromagnetic wave resistivity logging tool for Logging While Drilling(LWD) is one of the most widely used logging tools in horizontal well development. However, the anisotropy of the formation and the distance between the surrounding rock and the boundary in the horizontal well environment can cause distortion in the electromagnetic wave resistivity measurement values, leading to the common problem of low drilling rate in the development of thin reservoirs. In this paper, taking the electromagnetic wave LWD resistivity tool of CNLC as an example, the numerical simulation method is used to investigate the instrument response law in the horizontal well formation, and the characteristic signals indicating the boundary distance and anisotropy of the formation are defined and quantified, and the combination of characteristic signals and classification inversion is used to realize the quantitative calculation of the anisotropy and multiple boundary distances of the conventional electromagnetic wave LWD resistivity tool in complex formations. The boundary distance, horizontal resistivity and vertical resistivity calculated by inversion are consistent with the changes in borehole trajectory, the response characteristics of logging curves and the formation occurrence information displayed by borehole imaging, which verifies the rationality of the method. This method is suitable for obtaining boundary distance, anisotropy and formation resistivity parameters from conventional LWD instruments, quantifies the boundary detection ability of conventional electromagnetic wave resistivity instruments, provides a new idea for precise geological guidance of thin-bedded and complex oil and gas reservoirs, and provides a technical method for the fine evaluation of post-drilling formations, and has great potential application value.

Key words

Logging While Drilling(LWD) / Resistivity / Anisotropy / Inversion / Geological orientation

Cite this article

Download Citations
XiaoLei CHEN , BaoYin LIU , Jun ZHOU , et al . Numerical simulation investigation and geological guided inversion method research of electromagnetic wave resistivity instruments for LWD in anisotropic formations[J]. Progress in Geophysics. 2025, 40(1): 188-198 https://doi.org/10.6038/pg2025II0063

References

Bittar M, Klein J, Beste R, et al. 2007. A new azimuthal deep-reading resistivity tool for geosteering and advanced formation evaluation. //Proceedings of the SPE Annual Technical Conference and Exhibition. Anaheim: SPE.
Bittar M, Wu H H M, Ma J, et al. 2020. First LWD fully triaxial co-located antenna sensors for real-time anisotropy and dip angle determination, yielding better look-ahead detection. //Proceedings of the SPWLA 61st Annual Logging Symposium. Virtual: SPWLA, 2020.
Clegg N, Parker T, Djefel B, et al. 2019. The final piece of the puzzle: 3-D inversion of ultra-deep azimuthal resistivity LWD data. //Proceedings of the SPWLA 60th Annual Logging Symposium. The Woodlands: SPWLA.
Gao W , Chen K G , Du Q , et al. Influence of the electrically anisotropic formation on resistivity logging. Well Logging Technology, 2005, 29 (6): 502- 504.
Li H , Wang B H , Lu J L , et al. Geological characteristics and exploration prospects of Paleogene continental shale oil accumulation in Dongpu Sag, Bohai Bay Basin. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45 (3): 33- 41.
Lin F W , Tian C G , Geng X J , et al. Theory of response function and analysis of detecting characteristic of electromagnetic logging while drilling. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45 (1): 60- 68.
Lofts J, Deady R, Johnston S. 2005. Technical and commercial LWD challenges for service companies in crossing multidisciplinary boundaries. //Proceedings of the SPWLA 46th Annual Logging Symposium. New Orleans: SPWLA.
Loke M H , Barker R D . Practical techniques for 3D resistivity surveys and data inversion. Geophysical Prospecting, 1996, 44 (3): 499- 523.
Ma M X , Yue X Z , Li G Y . Geosteering and anisotropic resistivity evaluation by using a tilted transmitter-tilted receiver tool structure. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42 (4): 50- 58.
Pei Y W , Sheng S Z , Miao Z S , et al. Sandbox physical modelling with multiple detachment layers and its implication on structural evolution of East Sichuan Fold Belt. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46 (2): 38- 49.
Thiel M, Bower M, Omeragic D. 2017. 2D reservoir imaging using deep directional resistivity measurements. //Proceedings of the SPWLA 58th Annual Logging Symposium. Oklahoma City: SPWLA.
Wu Y M , Zhang W , Liu B Y , et al. Inversion of anisotropic resistivity in three-dimensional asymmetric media and its application. Well Logging Technology, 2016, 40 (5): 541- 548.
Xiao D , Wang X N , Zhang W , et al. Discussion on the differences and reasons between cable tools and drilling tools in mudstone resistivity measurement in the South China Sea region. Journal of Yangtze University (Natural Science Edition), 2016, 13 (20): 36- 39.
Xu K J , Li M , Ji C H , et al. Data space joint inversion of ground and borehole magnetic data with fuzzy C-means clustering constraints. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45 (3): 55- 64.
Yue Y X , Chen Y D , Wu J W , et al. Iterative least squares spectrum inversion based on adaptive shaping regularization. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46 (3): 54- 61.
Zhang G H , Zhang W , Wu Y M , et al. Inversion methods study of azimuthal EM LWD tool and its applications in horizontal well. Progress in Geophysics, 2017, 32 (2): 927- 938.
Zhang G Y , Lin C Y , Wang Z Z , et al. Hybrid knowledge driven and data driven intelligent reservoir characterization and its research progress. Progress in Geophysics, 2024, 39 (1): 119- 140.
Zhang W Y , Zhang C , Sun K , et al. Review of research progress on methods to improve the longitudinal resolution of thin reservoir logging curves. Progress in Geophysics, 2024, 39 (1): 291- 304.
Zhang Z Q , Mu L X , Zhang X , et al. Application of vector finite element method to simulate logging while drilling resistivity tools. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35 (4): 64- 71.
, 科贵 , , 等. 地层电性各向异性对电阻率测井的影响. 测井技术, 2005, 29 (6): 502- 504.
友喜 , 艺都 , 佳伟 , 等. 自适应整形正则化迭代最小二乘谱反演方法. 中国石油大学学报(自然科学版), 2022, 46 (3): 54- 61.
, 保华 , 建林 , 等. 东濮凹陷古近系页岩油富集地质条件与勘探前景. 中国石油大学学报(自然科学版), 2021, 45 (3): 33- 41.
发武 , 超国 , 学杰 , 等. 随钻电磁波测井响应函数理论及探测特性. 中国石油大学学报(自然科学版), 2021, 45 (1): 60- 68.
明学 , 喜洲 , 国玉 . 基于倾斜发射-倾斜接收仪器结构进行随钻地质导向与地层各向异性评价. 中国石油大学学报(自然科学版), 2018, 42 (4): 50- 58.
仰文 , 受政 , 正硕 , 等. 多滑脱层构造物理模拟试验及其对川东褶皱带形成演化的指示意义. 中国石油大学学报(自然科学版), 2022, 46 (2): 38- 49.
意明 , , 保银 , 等. 三维非对称介质电阻率各向异性反演及应用. 测井技术, 2016, 40 (5): 541- 548.
, 显南 , , 等. 中国南海地区电缆工具与随钻工具在泥岩电阻率测量中的差异现象及原因探讨. 长江大学学报(自科版), 2016, 13 (20): 36- 39.
凯军 , , 春晖 , 等. 基于模糊C均值聚类约束的井-地磁法联合数据空间反演. 中国石油大学学报(自然科学版), 2021, 45 (3): 55- 64.
国华 , , 意明 , 等. 随钻方位电磁波测井反演方法研究及水平在水平井中的应用. 地球物理学进展, 2017, 32 (2): 927- 938.
国印 , 承焰 , 志章 , 等. 知识与数据融合驱动的油气藏智能表征及研究进展. 地球物理学进展, 2024, 39 (1): 119- 140.
文艺 , , , 等. 提高薄储层测井曲线纵向分辨率方法研究进展综述. 地球物理学进展, 2024, 39 (1): 291- 304.
中庆 , 林雪 , , 等. 矢量有限元素法在随钻电阻率测井模拟中的应用. 中国石油大学学报(自然科学版), 2011, 35 (4): 64- 71.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(8265 KB)

Accesses

Citation

Detail

Sections
Recommended

/