Development of transient electromagnetic transmitter based on SiC MOSFET for high-resolution near-surface

ShaoHeng CHUN, FeiFei WANG, RuJun CHEN, RuiJie SHEN, Xin PENG, Chao XU, Hao YIN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 358-371.

PDF(4994 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4994 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 358-371. DOI: 10.6038/pg2025II0069

Development of transient electromagnetic transmitter based on SiC MOSFET for high-resolution near-surface

Author information +
History +

Abstract

As an important component of Transient Electromagnetic (TEM) prospecting, the performance of a TEM transmitter almost determines the effectiveness of this prospecting method. In order to accurately prospect shallow and even very shallow layers using multi-turn small coils, this paper designs an improved TEM transmitter based on SiC MOSFET. SiC MOSFET is a third-generation semiconductor that offers significant improvements in voltage withstanding, current withstanding, heat dissipation, and response speed compared to widely used Si IGBT. The shut-off time, as a critical parameter of the transmitter, essentially determines the degree of coupling between the primary and secondary field signals. To prevent losing information in even very shallow and relatively shallow layers, the transmitter designed in this paper supports switching transmission between large and small currents. When prospecting in even very shallow or relatively shallow layers, a small current of 1.1 A can be selected, with a shut-off time of only 4 μs. When prospecting in shallow layers, a large current of 16.2 A can be selected, with a shut-off time of 35 μs. To provide transmitting current data use for post-processing, this paper designs a current acquisition system that supports dynamic sampling rate to collect the current waveform in the whole time. When the current waveform is in the rising or falling edge area, the acquisition system automatically selects a high sampling rate of 1.8 MSPS for sampling. When the current waveform is in the steady-state area, the acquisition system automatically selects the lowest sampling rate of 50 KSPS for sampling. Tests show that by sampling with dynamic sampling rate, the acquisition accuracy and data volume can be effectively balanced, thereby ensuring the stability of the storage system. In addition, the transmitter board has a small size of only 255 mm×192 mm, and supports 12 V battery power supply, so it has good portability and can improve field prospecting efficiency to a certain extent.

Key words

Shut-off time / SiC MOSFET / Passive constant voltage clamping / Automatic switching between large or small current / Dynamic sampling rate

Cite this article

Download Citations
ShaoHeng CHUN , FeiFei WANG , RuJun CHEN , et al . Development of transient electromagnetic transmitter based on SiC MOSFET for high-resolution near-surface[J]. Progress in Geophysics. 2025, 40(1): 358-371 https://doi.org/10.6038/pg2025II0069

References

Alshehri F , Abdelrahman K . Groundwater aquifer detection using the time-domain electromagnetic method: a case study in Harrat Ithnayn, northwestern Saudi Arabia. Journal of King Saud University-Science, 2022, 34 (1): 101684
Baawain M S , Al-Futaisi A M , Ebrahimi A , et al. Characterizing leachate contamination in a landfill site using Time Domain Electromagnetic (TDEM) imaging. Journal of Applied Geophysics, 2018, 151: 73- 81.
Chen S D , Lin J , Zhang S . Effect of transmitter current waveform on TEM response. Chinese Journal of Geophysics, 2012, 55 (2): 709- 716.
El-Kaliouby H , Abdalla O . Application of time-domain electromagnetic method in mapping saltwater intrusion of a coastal alluvial aquifer, North Oman. Journal of Applied Geophysics, 2015, 115: 59- 64.
Fu Z H , Zhao J L , Zhou L W , et al. WTEM fast turn-off transient electromagnetic detection system. Chinese Journal of Scientific Instrument, 2008, 9 (5): 933- 936.
Ji Y J , Lin J , Yu S B , et al. A study on solution of transient electromagnetic response during transmitting current turn-off in the ATTEM system. Chinese Journal of Geophysics, 2006, 49 (6): 1884- 1890.
Joung I S , Cho S O , Kim B , et al. A review of the time-domain electromagnetic method: research trends and applications. Journal of the Korean Society of Mineral and Energy Resources Engineers, 2022, 59 (4): 364- 378.
Kalisperi D , Kouli M , Vallianatos F , et al. A transient electromagnetic (TEM) method survey in north-central coast of Crete, Greece: evidence of seawater intrusion. Geosciences, 2018, 8 (4): 107
Lai L B , Chen C Y , Zhang H , et al. Analysis on the application of transient electromagnetic method in landfill detection. Geotechnical Investigation & Surveying, 2018, 46 (10): 73- 78.
Lai Y F , Xi Z Z , Zhang F , et al. Application of opposing coils transient electromagnetic resistivity spectrum method to detect bauxite deposits. Journal of Central South University (Science and Technology), 2021, 52 (9): 3264- 3272.
Liu W . Application of transient electromagnetic method in geophysical exploration. Energy and Energy Conservation, 2023, (3): 219- 221.
G Y . Current status and development trend of transient EM method. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29 (S1): 111- 115. 111-115, 10
Maurya P K , Christiansen A V , Pedersen J , et al. High resolution 3D subsurface mapping using a towed transient electromagnetic system-tTEM: case studies. Near Surface Geophysics, 2020, 18 (3): 249- 259.
Niu Z L . Time Domain Electromagnetic Method Principle. Changsha: Central South University Press, 2007
Ruiz-Aguilar D , Tezkan B , Arango-Galván C , et al. 3D inversion of MT data from northern Mexico for geothermal exploration using TEM data as constraints. Journal of Applied Geophysics, 2020, 172: 103914
Sheard S N , Ritchie T J , Christopherson K R , et al. Mining, environmental, petroleum, and engineering industry applications of electromagnetic techniques in geophysics. Surveys in Geophysics, 2005, 26 (5): 653- 669.
Sheng K , Ren N , Xu H Y . A recent review on silicon carbide power devices technologies. Proceedings of the CSEE, 2020, 40 (6): 1741- 1753.
Wang J , Zhang X P , Niu J J , et al. Ground transient electromagnetic system contrast test. Progress in Geophysics, 2017, 32 (6): 2670- 2676.
Wang Y. 2010. Design and implementation of a multi-channel transient electro-magnetic exploration system[Master's thesis](in Chinese). Changchun: Jilin University.
Xu Z Y , Fu Z H , Liao X , et al. Application analysis of detailed detection of diseases based on small loop transient electromagnetic method. Progress in Geophysics, 2022, 37 (2): 892- 901.
Xue G Q . On surveying depth by transient electromagnetic sounding method. Oil Geophysical Prospecting, 2004, 39 (5): 575- 578.
Xue G Q , Li X , Di Q Y . The progress of TEM in theory and application. Progress in Geophysics, 2007, 22 (4): 1195- 1200.
Yu S B , Wang Z , Ji Y J . Transient electromagnetic sounding system design based on the GPS synchronization. Journal of Electronic measurement and Instrument, 2005, 19 (4): 39- 42.
Zhang B R , Lin J , Ji Y J . Study on phase conversion process and releasing imaginary power of loop in TEM-Ⅱ transmitter. Instrument Technique and Sensor, 2002, (12): 29- 31.
Zhao Y. 2019. Design of SiC based electric vehicle inverter [Master's thesis](in Chinese). Changsha: Hunan University, doi: 10.27135/d.cnki.ghudu.2019.003393.
Zhou F D , Lin J , Zhu K G , et al. Design of transmit current recorder of transient electromagnetic detection system. Journal of Jilin University (Engineering and Technology Edition), 2009, 39 (2): 541- 545.
曙东 , , . 发射电流波形对瞬变电磁响应的影响. 地球物理学报, 2012, 55 (2): 709- 716.
志红 , 俊丽 , 雒维 , 等. WTEM高速关断瞬变电磁探测系统. 仪器仪表学报, 2008, 29 (5): 933- 936.
艳鞠 , , 生宝 , 等. ATTEM系统中电流关断期间瞬变电磁场响应求解的研究. 地球物理学报, 2006, 49 (6): 1884- 1890.
刘保 , 昌彦 , , 等. 瞬变电磁法在垃圾填埋场探测中的应用分析. 工程勘察, 2018, 46 (10): 73- 78.
耀发 , 振铢 , , 等. 等值反磁通瞬变电磁电阻率谱系法探测铝土矿. 中南大学学报(自然科学版), 2021, 52 (9): 3264- 3272.
. 瞬变电磁法在地球物理勘探中的应用研究. 能源与节能, 2023, (3): 219- 221.
国印 . 瞬变电磁法的现状与发展趋势. 物探化探计算技术, 2007, 29 (S1): 111- 115. 111-115, 10
之琏 . 时间域电磁法原理. 长沙: 中南大学出版社, 2007
, , 弘毅 . 碳化硅功率器件技术综述与展望. 中国电机工程学报, 2020, 40 (6): 1741- 1753.
, 晓培 , 建军 , 等. 地面瞬变电磁探测系统对比试验. 地球物理学进展, 2017, 32 (6): 2670- 2676.
王远. 2010. 一种便携式多通道瞬变电磁探测系统的设计与实现[硕士学位论文]. 长春: 吉林大学.
正玉 , 志红 , , 等. 基于小回线瞬变电磁法的病害体精细探测应用分析. 地球物理学进展, 2022, 37 (2): 892- 901.
国强 . 论瞬变电磁测深法的探测深度. 石油地球物理勘探, 2004, 39 (5): 575- 578.
国强 , , 青云 . 瞬变电磁法理论与应用研究进展. 地球物理学进展, 2007, 22 (4): 1195- 1200.
生宝 , , 艳鞠 . GPS同步瞬变电磁探测系统设计. 电子测量与仪器学报, 2005, 19 (4): 39- 42.
秉仁 , , 艳鞠 . TEM-Ⅱ型电磁法发射机换相过程的研究. 仪表技术与传感器, 2002, (12): 29- 31.
赵阳. 2019. 电动汽车碳化硅逆变器设计[硕士学位论文]. 长沙: 湖南大学, doi: 10.27135/d.cnki.ghudu.2019.003393.
逢道 , , 凯光 , 等. 瞬变电磁探测发射电流波形记录单元设计. 吉林大学学报(工学版), 2009, 39 (2): 541- 545.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(4994 KB)

Accesses

Citation

Detail

Sections
Recommended

/