Prediction method of reservoir evaluation parameters based on improved Stacking fusion model

FengCai HUO, QingZhi LI, HongLi DONG, Yi CHEN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 691-704.

PDF(5544 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5544 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 691-704. DOI: 10.6038/pg2025II0072

Prediction method of reservoir evaluation parameters based on improved Stacking fusion model

Author information +
History +

Abstract

Accurate prediction of reservoir porosity and permeability is of great significance to reservoir evaluation. For the calculation of reservoir parameters, the traditional empirical common method still has large errors. In order to improve the prediction accuracy of reservoir parameters and improve the generalization ability of the model, an integrated learning algorithm is proposed based on the improved Stacking fusion model. The differences in data observation and training angles between different algorithms are employed as the basic principle to fully leverage the advantages of the model. First, in terms of the traditional Stacking fusion learning model, the output results of the model for the base learner at the first layer are optimized. In view of the possible uneven data division that results in poor prediction, the weighted average of the prediction results is performed according to the test precision of the base model, and the results are obtained as the characteristics of the second layer. Secondly, the new combined training set may lose some of the information in the original training set, and the original data set is also used as a part of the training of the secondary learner, so that the meta-learner can learn the implicit relationship between the original training set and the new training set, thereby improving the model prediction effect. Finally, the models that are independent of each other are integrated through the Stacking fusion model to enhance model generalization. Compared with the traditional Stacking fusion learning model, the Root-Mean-Square-Error(RMSE) prediction of porosity and permeability in the improved model is reduced by 7.7% and 7.1%, respectively, which verifies that the model has good prediction.

Key words

Parameter prediction / Porosity / Permeability / Stacking fusion model / Ensemble learning

Cite this article

Download Citations
FengCai HUO , QingZhi LI , HongLi DONG , et al. Prediction method of reservoir evaluation parameters based on improved Stacking fusion model[J]. Progress in Geophysics. 2025, 40(2): 691-704 https://doi.org/10.6038/pg2025II0072

References

Cheng X , Zhou J , Fu H C , et al. Applicability and application of machine learning algorithm in logging interpretation. Northwestern Geology, 2023, 56 (4): 336- 348.
Fu Y , Ren Z X , Wei S R , et al. Ultra-short-term power prediction of offshore wind power based on improved LSTM-TCN model. Proceedings of the CSEE, 2022, 42 (12): 4292- 4302.
Gu X Y , Xiao Z G . Research on the application of ARIMA-SVR combination model in satellite telemetry parameter prediction. Chinese Journal of Space Science, 2022, 42 (2): 306- 312.
Gu Y F , Zhang D Y , Bao Z D , et al. Permeability prediction using gradient boosting decision tree (GBDT): a case study of tight sandstone reservoirs of member of Chang 4+5 in western Jiyuan oilfield. Progress in Geophysics, 2021, 36 (2): 585- 594.
Gu Y F , Zhang D Y , Ruan J F , et al. A new model for permeability prediction in appraisal of petroleum reserves. Progress in Geophysics, 2022, 37 (2): 588- 599.
Hou X M , Wang F Y , Zai Y , et al. Prediction of carbonate porosity and permeability based on machine learning and logging data. Journal of Jilin University (Earth Science Edition), 2022, 52 (2): 644- 653.
Lai J , Wang G W , Wang S N , et al. Overview and research progress in logging recognition method of clastic reservoir diagenetic facies. Journal of Central South University (Science and Technology), 2013, 44 (12): 4942- 4953.
Li Y , Zhang B H , Guo Y Y . Lasso-lssvm prediction model optimized by improved particle swarm algorithm. Statistics & Decision, 2021, 37 (13): 45- 49.
Liu J , Cao J X , Ding W N , et al. Research on reservoir porosity prediction method based on bidirectional longshort-term memory neural network. Progress in Geophysics, 2022, 37 (5): 1993- 2000.
Liu Y M , Luo H Y , Xie T Q . Research and application of PM2.5. concentration prediction model based on XGBoost-ARIMA method. Journal of Safety and Environment, 2023, 23 (1): 211- 221.
Liu Z S , Bao Q Z , Liu J Z , et al. A simplified 2D petrophysical model for regular polygon pores. Oil Geophysical Prospecting, 2022, 57 (1): 140- 148.
Lu P , Guo J Z , Gao C Y , et al. Machine learning-based prediction of porosity in tight sandstone reservoirs for CO2 geological sequestration. Progress in Geophysics, 2024, 39 (3): 1129- 1140.
Qin M , Hu X Y , Liang Y N , et al. Using stacking model fusion to identify fluid in hightemperature and high-pressure reservoir. Oil Geophysical Prospecting, 2021, 56 (2): 364- 371.
Ren Y L , Zhou X G . Evaluation of reservoir oil and gas based on machine learning. Information System Engineering, 2019, 32 (6): 21- 22.
Wang J , Cao J X , Zhou X . Reservoir porosity prediction based on deep bidirectional recurrent neural network. Progress in Geophysics, 2022, 37 (1): 267- 274.
Wang M , Dong Y , Cai J , et al. Method for reservoir permeability prediction and qualityevaluation based on BP neural network. Progress in Geophysics, 2023, 38 (1): 321- 327.
Wang M , Yang T , Tang H M , et al. Prediction for total porosity of shale based on transfer deep neural network. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45 (6): 69- 79.
Wu Z Y , Zhang X , Zhang C L , et al. Lithology identification based on LSTM recurrent neural network. Lithologic Reservoirs, 2021, 33 (3): 120- 128.
Xu Y Q , He B L , Wang G S , et al. A novel prediction method of formation pore pressure driven by deep learning and Eaton method. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47 (6): 50- 59.
Yan X Y , Gu H M , Xiao Y F , et al. XGBoost algorithm applied in the interpretation of tight-sand gas reservoir on well logging data. Oil Geophysical Prospecting, 2019, 54 (2): 447- 455.
Yang K , Wang F Y , Zeng F C , et al. Permeability prediction based on fractal characteristics of digital rock. Journal of Jilin University (Earth Science Edition), 2020, 50 (4): 1003- 1011.
Zhong H R , Cheng Y H , Lin M X , et al. Lithology identification of complex carbonate based on SOM and fuzzy recognition. Lithologic Reservoirs, 2019, 31 (5): 84- 91.
Zhou J X , Wang X . Remaining life prognostics of aeroengine based on lightGBM. Modern Computer, 2021, 27 (33): 44- 48.
Zhou Q , Yin X Y , Li K . Seismic rock physics modeling and shear wave velocity prediction method of coal measure strata. Oil Geophysical Prospecting, 2022, 57 (2): 357- 366.
, , 海成 , 等. 机器学习算法在地球物理测井中的适用性及应用. 西北地质, 2023, 56 (4): 336- 348.
, 子旭 , 书荣 , 等. 基于改进LSTM-TCN模型的海上风电超短期功率预测. 中国电机工程学报, 2022, 42 (12): 4292- 4302.
昕雨 , 志刚 . ARIMA-SVR组合模型在卫星遥测参数预测中的应用. 空间科学学报, 2022, 42 (2): 306- 312.
宇峰 , 道勇 , 志东 , 等. 利用梯度提升决策树(GBDT)预测渗透率——以姬塬油田西部长4+5段致密砂岩储层为例. 地球物理学进展, 2021, 36 (2): 585- 594.
宇峰 , 道勇 , 金凤 , 等. 一种用于油气储量评估中渗透率预测新模型. 地球物理学进展, 2022, 37 (2): 588- 599.
贤沐 , 付勇 , , 等. 基于机器学习和测井数据的碳酸盐岩孔隙度与渗透率预测. 吉林大学学报(地球科学版), 2022, 52 (2): 644- 653.
, 贵文 , 书南 , 等. 碎屑岩储层成岩相测井识别方法综述及研究进展. 中南大学学报(自然科学版), 2013, 44 (12): 4942- 4953.
, 本慧 , 宇燕 . 改进粒子群算法优化下的Lasso-Lssvm预测模型. 统计与决策, 2021, 37 (13): 45- 49.
, 俊兴 , 蔚楠 , 等. 基于双向长短期记忆神经网络的储层孔隙度预测方法研究. 地球物理学进展, 2022, 37 (5): 1993- 2000.
拥民 , 皓懿 , 铁强 . 基于XGBoost-ARIMA方法的PM2.5. 质量浓度预测模型的研究及应用. 安全与环境学报, 2023, 23 (1): 211- 221.
致水 , 乾宗 , 俊州 , 等. 一种简化的二维规则多边形孔隙岩石物理模型. 石油地球物理勘探, 2022, 57 (1): 140- 148.
, 京哲 , 春云 , 等. 基于机器学习的CO2封存致密砂岩储层孔隙度预测. 地球物理学进展, 2024, 39 (3): 1129- 1140.
, 向阳 , 玉楠 , 等. 利用Stacking模型融合法识别高温、高压储层流体. 石油地球物理勘探, 2021, 56 (2): 364- 371.
义丽 , 相广 . 基于机器学习的储集层含油气性评价. 信息系统工程, 2019, 32 (6): 21- 22.
, 俊兴 , . 基于深度双向循环神经网络的储层孔隙度预测. 地球物理学进展, 2022, 37 (1): 267- 274.
, , , 等. 基于BP神经网络的储层渗透率预测及质量评价方法. 地球物理学进展, 2023, 38 (1): 321- 327.
, , 洪明 , 等. 迁移深度神经网络的页岩总孔隙度预测. 西南石油大学学报(自然科学版), 2023, 45 (6): 69- 79.
中原 , , 春雷 , 等. 基于LSTM循环神经网络的岩性识别方法. 岩性油气藏, 2021, 33 (3): 120- 128.
玉强 , 保伦 , 龚舒 , 等. 深度学习与Eaton法联合驱动的地层孔隙压力预测方法. 中国石油大学学报(自然科学版), 2023, 47 (6): 50- 59.
星宇 , 汉明 , 逸飞 , 等. XGBoost算法在致密砂岩气储层测井解释中的应用. 石油地球物理勘探, 2019, 54 (2): 447- 455.
, 付勇 , 繁超 , 等. 基于数字岩心分形特征的渗透率预测方法. 吉林大学学报(地球科学版), 2020, 50 (4): 1003- 1011.
鸿儒 , 育红 , 孟雄 , 等. 基于SOM和模糊识别的复杂碳酸盐岩岩性识别. 岩性油气藏, 2019, 31 (5): 84- 91.
俊曦 , . 基于LightGBM的航空发动机剩余寿命预测. 现代计算机, 2021, 27 (33): 44- 48.
, 兴耀 , . 煤系地层地震岩石物理建模及横波预测方法. 石油地球物理勘探, 2022, 57 (2): 357- 366.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5544 KB)

Accesses

Citation

Detail

Sections
Recommended

/