Abnormal changes analysis of surface temperature and water vapor before and after earthquake

HuaFeng MA, Li LI, YongZhe WANG, Hang YU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1372-1382.

PDF(5352 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5352 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1372-1382. DOI: 10.6038/pg2025II0073

Abnormal changes analysis of surface temperature and water vapor before and after earthquake

Author information +
History +

Abstract

Before and after a large earthquake, the weather often changes abnormally and produces precipitation in the earthquake area. Based on the meteorological data of surface temperature, Zenith Total Delay (ZTD) and actual precipitation 10 days before and 5 days after the earthquake happening, this paper analyzed the abnormal changes of surfaces temperature and ZTD before and after the earthquake based on the methods of Z-Score (ZS) and wavelet transform. The results shown that there were large-scale surface temperature anomalies within 5°×5° of the epicenter, and the ZS index of the epicenter was relatively large. The earthquake occurred in the decline stage after the ZS index reaches its peak. The ZTD shown several significant rises and decline changes, the rainfall occurred at the same time. The ZS index of surface temperature showed obvious similarities with the ZTD changes. The ZS index reached the peak earlier than ZTD, indicating that the abnormal changes of ZTD were highly correlated with the surface temperature. The ZTD after wavelet decomposition and reconstruction will show abnormal peak or trough signals 1~3 days before and after the earthquake happening, indicating that the intensified water vapor fluctuation is one of the indicators of precipitation. Therefore, the ZS index abnormal fluctuation of surface temperature and the ZTD peak or valley signal after wavelet decomposition and reconstruction can provide references for short-term earthquake forecast and post-earthquake secondary meteorological disaster prevention.

Key words

Earthquake / GNSS / ZTD / ZS / Wavelet transform / Surface temperature / Water vapor

Cite this article

Download Citations
HuaFeng MA , Li LI , YongZhe WANG , et al. Abnormal changes analysis of surface temperature and water vapor before and after earthquake[J]. Progress in Geophysics. 2025, 40(4): 1372-1382 https://doi.org/10.6038/pg2025II0073

References

Akilan A , Padhy S , Dimri V P , et al. Co-seismic and post-seismic changes in ZTD and TEC of the 2015 Nepal earthquake. Pure and Applied Geophysics, 2021, 178 (9): 3339- 3354.
Chen M H , Deng Z H , Ma X J . Probable surface latent heat flux anomalies before the 2010 Chile MS8. 8 earthquake and its relationship to the variations of surface temperature. Chinese Journal of Geophysics, 2011, 54 (7): 1738- 1744.
Chen M H , Deng Z H , Tan Z G , et al. Retrieving precipitable water vapor from GPS observation data and primary discussion of earthquake PW anomalies. South China Journal of Seismology, 2017, 37 (1): 8- 16.
Chen S Y , Liu P X , Feng T , et al. Exploring changes in land surface temperature possibly associated with earthquake: case of the April 2015 Nepal MW7.9 earthquake. Entropy, 2020, 22 (4): 377
Du C , Sun K . Analysis of seismic thermal anomaly in Yutian area of Xinjiang, China based on multi-source remote sensing data of different spatial and temporal scales. Earthquake, 2022, 42 (3): 37- 51.
Gao J G , Yao Q L , Qiang Z J , et al. A study on the relationship between the sumatra earthquake in Indonesia and the pearl river floods in China. Progress in Geophysics, 2007, 22 (4): 1393- 1399.
Guo A , Jiang N , Xu Y , et al. Co-seismic characterization analysis in PWV and land-atmospheric observations associated with Luding MS6.8 earthquake occurrence in China on September 5, 2022. Geomatics. Natural Hazards and Risk, 2023a, 14 (1): 2279494
Guo A , Xu Y , Jiang N , et al. Analyzing correlations between GNSS retrieved precipitable water vapor and land surface temperature after earthquakes occurrence. Science of the Total Environment, 2023b, 872: 162225
Jin S G , Han L , Cho J . Lower atmospheric anomalies following the 2008 Wenchuan earthquake observed by GPS measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73 (7-8): 810- 814.
Jing B B , Shi W . Study on loss and earthquake insurance of Turkey MS7.8 earthquake in 2023. Technology for Earthquake Disaster Prevention, 2023, 18 (3): 495- 504.
Li L , Song Y , Zhou J L . Preliminary Exploration of GNSS meteorological elements using wavelet transform for rainstorm prediction. Journal of Geodesy and Geodynamics, 2020, 40 (3): 225- 230.
Ma Y W , Zang Y , Han Y Y , et al. A review of seismicity in 2022. Earthquake Research in China, 2023, 39 (1): 213- 218.
Mao D H, Lai J Y, Liu L L. 2017. The analysis of ZTD's change in the process of the earthquake. //Proceedings of the 8th Annual China Satellite Navigation Conference (in Chinese). Shanghai, China, 205-208.
Tang H C , Liao H Y , Wu J , et al. Anomaly trend analysis of satellite thermal infrared and TEC before two strong earthquakes in Turkey on February 6, 2023. Progress in Earthquake Sciences, 2023, 53 (10): 449- 461.
Wang Y , Lou Z S , Liu Y P , et al. Abnormal change of GNSS ZTD before and after earthquake based on wavelet transform. GNSS World of China, 2019a, 44 (3): 62- 68.
Wang Y , Ren D , Lou Z S , et al. Preliminary study on abnormal changes of PWV after earthquake. Journal of Geodesy and Geodynamics, 2019b, 39 (9): 881- 883. 881-883, 909
Wu W Y , Shan X J , Qu C Y , et al. Comparative study on thermal anomalies detection method before strong earthquake: Taking the 2014 MW6. 9 Yutian earthquake as an example. Seismology and Geology, 2022, 44 (6): 1503- 1520.
Wu Z H , Zhao G M . The earthquake prediction status and related problems: a review. Geological Bulletin of China, 2013, 32 (10): 1493- 1512.
Xu J S , Wu Q , Li L , et al. Physical mechanism of meteorological anomalies after the Maduo MW 7. 4 earthquake. Progress in Geophysics, 2023, 38 (1): 101- 109.
Xu Y , Chen X , Liu M , et al. Spatial-temporal relationship study between NWP PWV and precipitation: a case study of 'July 20' heavy rainstorm in Zhengzhou. Remote Sensing, 2022, 14 (15): 3636
Zhang F J , Zhong M J . Analysis of precipitation and thermal infrared anomalies before the M7.4 Maduo earthquake. Plateau Earthquake Research, 2022, 34 (3): 1- 5.
Zhou Y , Wang X Z , Xu C . Research on water vapor anomaly of 2023-02-06 Türkiye earthquakes based on FY-4A AGRI data. Journal of Geodesy and Geodynamics, 2023, 43 (12): 1294- 1299.
梅花 , 志辉 , 晓静 . 2010年智利MS8. 8级地震前可能的潜热通量异常及其与地表温度变化的关系. 地球物理学报, 2011, 54 (7): 1738- 1744.
梅花 , 志辉 , 争光 , 等. 利用GPS观测资料反演水汽含量及地震异常初步探讨. 华南地震, 2017, 37 (1): 8- 16.
, . 基于不同时空尺度多源遥感数据的新疆于田地区地震热异常分析. 地震, 2022, 42 (3): 37- 51.
建国 , 清林 , 祖基 , 等. 印尼苏门答腊三次大地震与中国珠江洪水关系的研究. 地球物理学进展, 2007, 22 (4): 1393- 1399.
冰冰 , . 2023年土耳其MS7. 8地震灾区损失与保险研究. 震灾防御技术, 2023, 18 (3): 495- 504.
, , 嘉陵 . 利用小波变换对暴雨过程中GNSS气象要素的初步探索. 大地测量与地球动力学, 2020, 40 (3): 225- 230.
亚伟 , , 颜颜 , 等. 2022年震情述评. 中国地震, 2023, 39 (1): 213- 218.
毛冬海, 黎峻宇, 刘立龙. 2017. 分析ZTD在地震过程中的变化. //第八届中国卫星导航学术年会论文集——S01卫星导航应用技术. 上海: 中国卫星导航系统管理办公室学术交流中心, 205-208.
好丛 , 洪月 , , 等. 2023年2月6日土耳其两次强震前卫星热红外及TEC趋势异常分析. 地震科学进展, 2023, 53 (10): 449- 461.
, 泽生 , 严萍 , 等. 基于小波变换的地震前后GNSS ZTD异常变化分析. 全球定位系统, 2019a, 44 (3): 62- 68.
, , 泽生 , 等. 地震后水汽异常变化初探. 大地测量与地球动力学, 2019b, 39 (9): 881- 883. 881-883, 909
玮莹 , 新建 , 春燕 , 等. 大地震震前热异常提取方法的对比研究——以2014年MW6. 9于田地震为例. 地震地质, 2022, 44 (6): 1503- 1520.
中海 , 根模 . 地震预报现状及相关问题综述. 地质通报, 2013, 32 (10): 1493- 1512.
健生 , , , 等. 2021年5月22日玛多M_W7.4级地震后气象异常的物理机制. 地球物理学进展, 2023, 38 (1): 101- 109.
飞捷 , 美娇 . 玛多M7.4级地震前降水量与热红外异常变化分析. 高原地震, 2022, 34 (3): 1- 5.
羿 , 新志 , . 基于FY-4A AGRI数据研究2023-02-06土耳其地震水汽异常变化. 大地测量与地球动力学, 2023, 43 (12): 1294- 1299.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5352 KB)

Accesses

Citation

Detail

Sections
Recommended

/