Research and application of seismic weak reflection fusion reconstruction technology based on compressed sensing

Cai LI, WenXiong CHEN, Fang LI, JunCai DIAO

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 387-397.

PDF(13147 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(13147 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 387-397. DOI: 10.6038/pg2025II0090

Research and application of seismic weak reflection fusion reconstruction technology based on compressed sensing

Author information +
History +

Abstract

The Bozhong 19-2 structure is located in the southwest of Bozhong Depression, with favorable accumulation background. The shallow layer has undergone multiple rounds of exploration, but no large-scale discovery has been made. The main target layer of the lower Ming section is deposited by the meandering river, and the longitudinal and transverse direction of the river changes rapidly, and the contact relationship of the sand body is unusually complex, which presents a weak seismic reflection artifact locally, which does not conform to the objective spreading rule of the sand body and affects the description of the continuous sand body. Through forward analysis, it can be seen that the seismic weak reflection phenomenon is mainly affected by the comprehensive factors such as the absorption and attenuation of the stratum, the thickness of the target layer, the physical properties of the target layer, the velocity of the overlying stratum, the structure of the overlying stratum and the distance between the target layer and the overlying stratum. The amplitude of the original seismic data is weakened and the frequency band is narrowed. In this paper, the compressed sensing optimization reconstruction algorithm is used to reconstruct the original signal, and the reconstructed signal is divided into high frequency body and low frequency body. Then the original signal is used as the input of the intermediate frequency body to realize the attribute fusion, and finally the fusion data body is obtained. The main frequency of the data body is improved, the frequency band is broadened, and the recovery of seismic weak reflection is realized. This method can make the recovery results more in line with the real underground situation without relying on logging data, so as to more objectively reflect the distribution law of shallow sand bodies, which is conducive to the characterization of shallow lithologic traps.

Key words

Compressed sensing / Fusion reconstruction / Weak seismic reflection / Seismic amplitude / Lithologic trap

Cite this article

Download Citations
Cai LI , WenXiong CHEN , Fang LI , et al. Research and application of seismic weak reflection fusion reconstruction technology based on compressed sensing[J]. Progress in Geophysics. 2025, 40(1): 387-397 https://doi.org/10.6038/pg2025II0090

References

Chen P , Tan H H , Qin T , et al. Research and application of spectrum blueing technology for frequency-broadening based on spectrum inversion. Journal of Northeast Petroleum University, 2021, 45 (5): 21- 30. 21-30, 71
Ding J C , Jiang X D , Weng B , et al. Advantage and application of high precision spectrum imaging technology based on physical wavelet time-frequency analysis and spectrum decomposition RGB plotting. China Offshore Oil and Gas, 2015, 27 (5): 27- 30. 27-30, 48
Donoho D L . Compressed sensing. IEEE Transactions on Information Theory, 2006, 52 (4): 1289- 1306.
Jiang R , Li Z C , Sun X D . Recent research status of seismic data reconstruction by artificial intelligence methods. Progress in Geophysics, 2023, 38 (5): 2047- 2062.
Li N , Liu Z F , Yang D S , et al. Application of comprehensive seismic attributes analysis technology in fine channel characterization. China Offshore Oil and Gas, 2020, 32 (1): 66- 73.
Liu L , Zhang J H , Liu Y X , et al. Study on pattern recognition and reservoir characterization method based on thin sand body reflection characteristics. Progress in Geophysics, 2018, 33 (6): 2409- 2415.
Ma J G , Wang J L , Zhou Q , et al. Fine characterization method of meandering river flake sedimentary sand body. China Offshore Oil and Gas, 2022, 34 (6): 101- 109.
Mao Y X , Lou M . Fluvial reservoir characterization and vertical heterogeneity analysis: taking Liulang Formation of C Oilfield in Xihu Depression as example. Journal of Northeast Petroleum University, 2021, 45 (5): 51- 62. 51-62, 94
Sheng T J , Zhao J T , Peng S P . Seismic diffraction extraction method using U-net for weak signals. Chinese Journal of Geophysics, 2023, 66 (3): 1192- 1204.
Song W Q , Wu C D . Seismic data resolution improvement based on compressed sensing. Oil Geophysical Prospecting, 2017, 52 (2): 214- 219.
Song W Q , Zhang Y , Wu C D , et al. The method of weak seismic reflection signal processing and extracting based on multitrace joint compressed sensing. Chinese Journal of Geophysics, 2017, 60 (8): 3238- 3245.
Sun M M , Li Z C , Qu Y M , et al. A seismic denoising method based on curvelet transform with sparse constraint in OVT domain. Geophysical Prospecting for Petroleum, 2019, 58 (2): 208- 218.
Tang G. 2010. Seismic data reconstruction and denoising based on compressive sensing and sparse representation[Ph. D. thesis](in Chinese). Beijing: Tsinghua University.
Wang X D, Wang R Z, Yan F, et al. 2020. Application of wide-angle reflection in complex weak reflection area. //Proceedings of the SPG/SEG Nanjing 2020 International Geophysical Conference Proceedings (in Chinese). Nanjing: China Petroleum Society Petroleum Geophysical Exploration Professional Committee (SPG).
Xue Y A , Xu P , Tang G M . Discovery and exploration implications of super-large high-yield oil and gas accumulation zone in the southwest belt of Bozhong sag. China Offshore Oil and Gas, 2023, 35 (3): 1- 11.
Yi J D , Zhang M , Li Z C , et al. Review of deep learning seismic data reconstruction methods. Progress in Geophysics, 2023, 38 (1): 361- 381.
Zeng H L. 2017. RGB blending of frequency panels: a new useful tool for high-resolution 3D stratigraphic imaging. //87th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.
Zhang L , Han L G , Xu D X , et al. Seismic data reconstruction with Shearlet transform based on compressed sensing technology. Oil Geophysical Prospecting, 2017, 52 (2): 220- 225.
Zhang M Z . Development and tendency of techniques for fluvial reservoir description in Shengli shallow beach sea. Progress in Geophysics, 2017, 32 (2): 822- 826.
Zhang Z J , Xiao G R , Xu D K . Seismic amplitude compensation method of gas cloud area based on generalized S-transform. China Offshore Oil and Gas, 2019, 31 (2): 62- 68.
Zhao C X, Li J G, Wang S G, et al. 2023-08-01. Weak signal extraction method based on coherent weighting coefficient (in Chinese): CN, 116520427A.
Zhao G G, Zhang W T, Cao Z M, et al. 2022-06-21. Earthquake weak signal enhancement method based on multiple compressed sensing (in Chinese): CN, 114647006A.
, 辉煌 , , 等. 基于谱反演的谱蓝化拓频方法研究及应用. 东北石油大学学报, 2021, 45 (5): 21- 30. 21-30, 71
继才 , 秀娣 , , 等. 基于物理小波时频分析及RGB分频混色的高精度频谱成像技术优势分析及应用. 中国海上油气, 2015, 27 (5): 27- 30. 27-30, 48
, 振春 , 小东 . 人工智能地震数据重建方法现状分析. 地球物理学进展, 2023, 38 (5): 2047- 2062.
, 志峰 , 东升 , 等. 地震属性综合分析技术在河道精细刻画中的应用. 中国海上油气, 2020, 32 (1): 66- 73.
, 军华 , 艺璇 , 等. 基于薄砂体反射特征的模式识别及储层表征方法研究. 地球物理学进展, 2018, 33 (6): 2409- 2415.
佳国 , 建立 , , 等. 曲流河片状沉积砂体精细刻画方法. 中国海上油气, 2022, 34 (6): 101- 109.
云新 , . 河流相储层刻画与垂向非均质性分析——以西湖凹陷C油田柳浪组为例. 东北石油大学学报, 2021, 45 (5): 51- 62. 51-62, 94
同杰 , 惊涛 , 苏萍 . 地震绕射波弱信号U-net网络提取方法. 地球物理学报, 2023, 66 (3): 1192- 1204.
维琪 , 彩端 . 利用压缩感知方法提高地震资料分辨率. 石油地球物理勘探, 2017, 52 (2): 214- 219.
维琪 , , 彩端 , 等. 多道联合压缩感知弱小反射地震信号提取处理方法. 地球物理学报, 2017, 60 (8): 3238- 3245.
苗苗 , 振春 , 英铭 , 等. 基于曲波域稀疏约束的OVT域地震数据去噪方法研究. 石油物探, 2019, 58 (2): 208- 218.
唐刚. 2010. 基于压缩感知和稀疏表示的地震数据重建与去噪[博士论文]. 北京: 清华大学.
王晓东, 王瑞贞, 晏丰, 等. 2020. 广角反射在复杂弱反射区的应用. //SPG/SEG南京2020年国际地球物理会议论文集. 南京: 中国石油学会石油物探专业委员会(SPG).
永安 , , 国民 . 渤中凹陷西南环特大型高产油气聚集带的发现与勘探启示. 中国海上油气, 2023, 35 (3): 1- 11.
继东 , , 振春 , 等. 深度学习地震数据重建方法研究综述. 地球物理学进展, 2023, 38 (1): 361- 381.
, 立国 , 德鑫 , 等. 基于压缩感知技术的Shearlet变换重建地震数据. 石油地球物理勘探, 2017, 52 (2): 220- 225.
明振 . 胜利滩海地区新近系河流相储层描述技术发展与趋势. 地球物理学进展, 2017, 32 (2): 822- 826.
志军 , 广锐 , 德奎 . 基于广义S变换的气云区地震振幅补偿方法. 中国海上油气, 2019, 31 (2): 62- 68.
赵翠霞, 李继光, 王胜阁, 等. 2023-08-01. 基于相干加权系数的弱信号提取方法: 中国, 116520427A.
赵国光, 张文涛, 曹振民, 等. 2022-06-21. 一种基于多重压缩感知的地震弱信号增强方法: 中国, 114647006A.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(13147 KB)

Accesses

Citation

Detail

Sections
Recommended

/