Reservoir porosity prediction using the VAE-BiGRU-Attention model: an example study of middle-low permeability sandstone reservoir

BinXin ZENG, Hui XIAO, ZiMei HAO, HuanHuan LIU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 658-669.

PDF(7795 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7795 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 658-669. DOI: 10.6038/pg2025II0097

Reservoir porosity prediction using the VAE-BiGRU-Attention model: an example study of middle-low permeability sandstone reservoir

Author information +
History +

Abstract

Porosity is an indispensable key physical parameter in reservoir evaluation, and there exists a complex and potential relationship between well logging curves and porosity. In previous studies, incomplete feature extraction of well logging curves and simple model construction have limited the accuracy of porosity prediction. To improve the prediction accuracy, this study innovatively combines Variational Auto-Encoder (VAE), Bidirectional Gated Recurrent Unit (BiGRU), and Attention mechanism to construct the VAE-BiGRU-Attention model. VAE can effectively learn the latent representation of data, enhancing data representation capability; BiGRU excels at capturing sequential data information, particularly suitable for handling the feature of porosity changing with depth; and the introduction of the Attention mechanism dynamically calculates the attention Attention weights of each time step, allowing the model to more accurately focus on key features and achieve better prediction results. To verify the effectiveness of the model, this paper is compared with Deep Neural Network (DNN), Recurrent Neural Network (RNN), and BiGRU-Attention through comparative experiments. The results show that the VAE-BiGRU-Attention model has a Mean Squared Error (MSE) of 0.995, Mean Absolute Error (MAE) of 0.698, and Root Mean Square Error (RMSE) of 0.998. Compared to other models, it exhibits significant improvement, effectively enhancing the accuracy of porosity prediction and providing a more reliable method for reservoir porosity prediction.

Key words

Porosity / Reservoir evaluation / Logging curves / Variational autoencoder / Bidirectional gated recurrent unit / VAE-BiGRU-Attention model

Cite this article

Download Citations
BinXin ZENG , Hui XIAO , ZiMei HAO , et al. Reservoir porosity prediction using the VAE-BiGRU-Attention model: an example study of middle-low permeability sandstone reservoir[J]. Progress in Geophysics. 2025, 40(2): 658-669 https://doi.org/10.6038/pg2025II0097

References

Ahn Y , Choe J . Reliable channel reservoir characterization and uncertainty quantification using variational autoencoder and ensemble smoother with multiple data assimilation. Journal of Petroleum Science and Engineering, 2022, 209: 109816
An P , Cao D P , Zhao B Y , et al. Reservoir physical parameters prediction based on LSTM recurrent neural network. Progress in Geophysics, 2019, 34 (5): 1849- 1858.
Chen Y H , Hu J , Jiang L C , et al. Quantitative pre-diction of fractured porosity by using conventional logging curves. Special Oil & Gas Reservoirs, 2017, 24 (6): 7- 11.
Duchi J , Hazan E , Singer Y . Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 2011, 12: 2121- 2159.
Graves A. 2012. Long short-term memory. //Graves A. Supervised Sequence Labelling with Recurrent neural Networks. Berlin, Heidelberg: Springer, 37-45, doi: 10.1007/978-3-642-24797-2_4.
Gulcehre C, Moczulski M, Denil M, et al. 2016. Noisy activation functions. //Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR. org, 3059-3068.
Hauke J , Kossowski T . Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones Geographicae, 2011, 30 (2): 87- 93.
Hinton G E , Osindero S , Teh Y W . A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18 (7): 1527- 1554.
Huang G, Liu Z, Van Der Maaten L, et al. 2017. Densely connected convolutional networks. //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 4700-4708.
Kingma D P, Welling M. 2013. Auto-encoding Variational Bayes. doi: 10.48550/arXiv.1312.6114.
Li H N , Duan Z Y , Zheng G J , et al. Reservoir parameter prediction method based on CNN-LSTM-VAE hybrid model. Progress in Geophysics, 2022, 37 (5): 1969- 1976.
Liu J , Cao J X , Ding W N , et al. Research on reservoir porosity prediction method based on bidirectional longshort-term memory neural network. Progress in Geophysics, 2022, 37 (5): 1993- 2000.
Liu Z P , He Y F . Application of artificial neural networks in log analysis. Acta Geophysica Sinica, 1995, 38 (S1): 323- 330.
Myers L, Sirois M J. 2014. Spearman correlation coefficients, differences between. //Wiley StatsRef: Statistics Reference Online. Washington: John Wiley & Sons.
Onyekuru S O , Iwuagwu J C , Ulasi A , et al. Calibration of petrophysical evaluation results of clastic reservoirs using core data, in the offshore depobelt, Niger Delta, Nigeria. Modeling Earth Systems and Environment, 2022, 8 (3): 3033- 3046.
Pelikan M. 2005. Bayesian optimization algorithm. //Pelikan M. Hierarchical Bayesian Optimization Algorithm: Toward A New Generation of Evolutionary Algorithms. Berlin, Heidelberg: Springer, 31-48, doi: 10.1007/978-3-540-32373-0_3.
Pohjalainen J , Räsänen O , Kadioglu S . Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Computer Speech & Language, 2015, 29 (1): 145- 171.
Schuster M , Paliwal K K . Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 1997, 45 (11): 2673- 2681.
Shewalkar A , Nyavanandi D , Ludwig S A . Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU. Journal of Artificial Intelligence and Soft Computing Research, 2019, 9 (4): 235- 245.
Socher R, Lin C C Y, Ng A Y, et al. 2011. Parsing natural scenes and natural language with recursive neural networks. //Proceedings of the 28th International Conference on Machine Learning. Washington: Omnipress, 129-136.
Urolagin S , Sharma N , Datta T K . A combined architecture of multivariate LSTM with Mahalanobis and Z-Score transformations for oil price forecasting. Energy, 2021, 231: 120963
Vaswani A, Shazeer N, Parmar N, et al. 2017. Attention is all you need. //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc.
Wang W , Sun Y X , Qi Q J , et al. Text sentiment classification model based on BiGRU-attention neural network. Application Research of Computers, 2019, 36 (12): 3558- 3564.
Yang L Q , Chen W , Zha B . Prediction and application of reservoir porosity by convolutional neural network. Progress in Geophysics, 2019, 34 (4): 1548- 1555.
Zhang H T , Yang X M , Chen Z , et al. Log data reconstruction method based on enhanced bidirectional long short-term memory neural network. Progress in Geophysics, 2022, 37 (3): 1214- 1222.
Zhang Z H , Gao C Q , Liu J J . Calculation method of porosity based on formation component analysis. Lithologic Reservoirs, 2012, 24 (1): 97- 99. 97-99, 107
Zheng W F, Cheng P Y, Cai Z T, et al. 2022. Research on network attack detection model based on BiGRU-attention. //Proceedings of the 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC). Qingdao: IEEE, 979-982, doi: 10.1109/ICFTIC57696.2022.10075310.
, 丹平 , 宝银 , 等. 基于LSTM循环神经网络的储层物性参数预测方法研究. 地球物理学进展, 2019, 34 (5): 1849- 1858.
彦虎 , , 龙聪 , 等. 利用常规测井曲线定量预测裂缝型孔隙度. 特种油气藏, 2017, 24 (6): 7- 11.
贺男 , 中钰 , 桂娟 , 等. 基于CNN-LSTM-VAE混合模型的储层参数预测方法. 地球物理学进展, 2022, 37 (5): 1969- 1976.
, 俊兴 , 蔚楠 , 等. 基于双向长短期记忆神经网络的储层孔隙度预测方法研究. 地球物理学进展, 2022, 37 (5): 1993- 2000.
争平 , 永富 . 人工神经网络在测井解释中的应用. 地球物理学报, 1995, 38 (S1): 323- 330.
, 玉霞 , 庆杰 , 等. 基于BiGRU-attention神经网络的文本情感分类模型. 计算机应用研究, 2019, 36 (12): 3558- 3564.
柳青 , , . 利用卷积神经网络对储层孔隙度的预测研究与应用. 地球物理学进展, 2019, 34 (4): 1548- 1555.
海涛 , 小明 , , 等. 基于增强双向长短时记忆神经网络的测井数据重构. 地球物理学进展, 2022, 37 (3): 1214- 1222.
兆辉 , 楚桥 , 娟娟 . 基于地层组分分析的储层孔隙度计算方法研究. 岩性油气藏, 2012, 24 (1): 97- 99. 97-99, 107

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(7795 KB)

Accesses

Citation

Detail

Sections
Recommended

/