Density logging curve reconstruction method based on TCN-BiGRU with multi-head attention mechanism

HuanHuan WANG, Bin ZHAO, JianXin LIU, LiangQing TAO, ChuQiao GAO, WenLong LIAO

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 592-604.

PDF(10226 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10226 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 592-604. DOI: 10.6038/pg2025II0114

Density logging curve reconstruction method based on TCN-BiGRU with multi-head attention mechanism

Author information +
History +

Abstract

During the well-logging process, factors such as instrument malfunction and borehole collapse often lead to distortion or loss of density curves in certain well intervals, which in turn introduces errors in reservoir evaluation. To enhance the accuracy of reservoir evaluation, the reconstruction of density curves becomes essential. Traditional machine learning methods for curve reconstruction often fail to meet the required precision. To address this limitation, this paper proposes a novel method for density curve reconstruction that integrates Temporal Convolutional Networks (TCN), Bidirectional Gated Recurrent Units (BiGRU), and Multi-Head Attention (MHA) mechanisms. The proposed method utilizes the convolutional characteristics of TCN to capture the long-term dependencies in well-logging data, while the introduction of the MHA mechanism enhances the ability of BiGRU to selectively focus on critical features, thereby achieving precise density curve reconstruction. This method was applied to field data from the study area for reconstruction experiments. Initially, the impact of incorporating lithology indicators on the model's reconstruction capability was evaluated. Subsequently, a comparative analysis was conducted between the proposed network and Gardner's equation, multiple regression, Gated Recurrent Units (GRU), and Bidirectional Gated Recurrent Units (BiGRU). Finally, the generalization ability of the proposed network was validated through core calibration. The results indicate that the proposed density curve reconstruction method not only achieves higher accuracy but also demonstrates excellent generalization capabilities.

Key words

Density logging curve reconstruction / Multi-Head Attention (MHA)mechanisms / Temporal Convolutional Networks (TCN) / Bidirectional Gated Recurrent Units (BiGRU) / Physical constraints

Cite this article

Download Citations
HuanHuan WANG , Bin ZHAO , JianXin LIU , et al . Density logging curve reconstruction method based on TCN-BiGRU with multi-head attention mechanism[J]. Progress in Geophysics. 2025, 40(2): 592-604 https://doi.org/10.6038/pg2025II0114

References

Bahdanau D, Cho K, Bengio Y. 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv: 1409.0473. http://arxiv.org/abs/1409.0473.
Chen Y G , Liu K N , Wang S . Fault knowledge graph construction for aviation equipment based on BiGRU-Attention improvement. Acta Aeronautica et Astronautica Sinica, 2024, 45 (18): 168- 181.
Cheng C , Gao Y , Chen Y , et al. Reconstruction method of old well logging curves based on BI-LSTM model—taking Feixianguan formation in east Sichuan as an example. Coatings, 2022, 12 (2): 113
Chung J, Gulcehre C, Cho K H, et al. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv: 1412.3555. http://arxiv.org/abs/1412.3555.
Duan Z Y , Wu Y , Xiao Y , et al. Density logging curve reconstruction method based on CGAN and CNN-GRU combined model. Progress in Geophysics, 2022, 37 (5): 1941- 1945.
Farha Y A, Gall J. 2019. MS-TCN: multi-stage temporal convolutional network for action segmentation. //Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 3570-3579, doi: 10.1109/CVPR.2019.00369.
He M , Yu H F , Tian Z Y , et al. Automatic recognition and reconstruction of abnormal density and acoustic log curves: a case study from B basin, Chad. Progress in Geophysics, 2018, 33 (5): 1911- 1918.
Hewage P , Behera A , Trovati M , et al. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station. Soft Computing, 2020, 24 (21): 16453- 16482.
Huang C , Lan M J , Qin Z C . The application of several logging curve correction methods to well Shun-9block of Tazhong area in Tarim Basin. Chinese Journal of Engineering Geophysics, 2014, 11 (4): 493- 497.
Jin Y J , Zhang Q , Wang M M . Well logging curve reconstruction based on genetic neural network. Progress in Geophysics, 2021, 36 (3): 1082- 1087.
Li G Q , Chen W H , Mu C . Residual-wider convolutional neural network for image recognition. IET Image Processing, 2020, 14 (16): 4385- 4391.
Li N , Xu B S , Wu H L , et al. Application status and prospects of artificial intelligence in well logging and formation evaluation. Acta Petrolei Sinica, 2021, 42 (4): 508- 522.
Liu A J , Zhang W , Li Q . Correction method of logging curves based on rock physics model. China Measurement & Test, 2013, 39 (5): 20- 23.
Ren Q , Zhang H B , Azevedo L , et al. Reconstruction of missing well-logs using facies-informed discrete wavelet transform and time series regression. SPE Journal, 2023, 28 (6): 2946- 2963.
Tang X Y , Li P . Analyzing on applicability of expanding influence correction method of acoustic logging in the coalbed methane reservoir. Progress in Geophysics, 2016, 31 (5): 2145- 2149.
Wang J , Cao J X , You J C . Reconstruction of logging traces based on GRU neural network. Oil Geophysical Prospecting, 2020, 55 (3): 510- 520.
Wang J , Cao J X , Fu J C , et al. Missing well logs prediction using deep learning integrated neural network with the self-attention mechanism. Energy, 2022, 261: 125270
Wang J R , Liang L W , Deng Q , et al. Research and application of log reconstruction based on multiple regression model. Lithologic Reservoirs, 2016, 28 (3): 113- 120.
Wang T T , Wang Z H , Li F , et al. Lithology identification in Optuna-BiGRU logging based on enhanced multi-head attention mechanism. Journal of Earth Sciences and Environment, 2024, 46 (1): 127- 142.
Wang Z F , Xu H Q , Yang M Q , et al. Seismic impedance inversion method based on temporal convolutional neural network. Oil Geophysical Prospecting, 2022, 57 (2): 279- 286. 279-286, 296
Yan X Y , Gu H M , Xiao Y F , et al. XGBoost algorithm applied in the interpretation of tight-sand gas reservoir on well logging data. Oil Geophysical Prospecting, 2019, 54 (2): 447- 455.
Yang Z L , Zhou L , Peng W L , et al. Application of BP neural network technology in sonic log data rebuilding. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30 (1): 63- 66.
Yue G. 2019. Application of density curve reconstruction technology in seismic inversion. //IOP Conference Series: Earth and Environmental Science. IOP Publishing, 022084, doi: 10.1088/1755-1315/300/2/022084.
Zeng L L , Ren W J , Shan L Q , et al. Well logging prediction and uncertainty analysis based on recurrent neural network with attention mechanism and Bayesian theory. Journal of Petroleum Science and Engineering, 2022, 208: 109458
Zhai X Y , Gao G , Li Y G , et al. Reconstruction method of logging curves by 2D convolutional neural network integrating attention mechanism. Oil Geophysical Prospecting, 2023, 58 (5): 1031- 1041.
Zhang D X , Chen Y T , Meng J . Synthetic well logs generation via recurrent neural networks. Petroleum Exploration and Development, 2018, 45 (4): 598- 607.
Zhang H T , Yang X M , Chen Z , et al. Log data reconstruction method based on enhanced bidirectional long short-term memory neural network. Progress in Geophysics, 2022, 37 (3): 1214- 1222.
Zhang J C , Deng J G , Tan Q , et al. Reconstruction of well logs based on XGBoost. Oil Geophysical Prospecting, 2022, 57 (3): 697- 705.
Zhang J J , Shao K , Luo X . Small sample image recognition using improved Convolutional Neural Network. Journal of Visual Communication and Image Representation, 2018, 55: 640- 647.
Zhang Z , Gao S , Zhang Z Y . Prediction model of dissolved oxygen in pond based on feature construction pretreatment and TCN-BiGRU. Journal of Shanghai Ocean University, 2023, 32 (5): 943- 952.
Zhou W , Zhao H H , Jiang F Y , et al. Logging data reconstruction based on cascade bidirectional long short-term memory neural network. Oil Geophysical Prospecting, 2022, 57 (6): 1473- 1480.
Zhou X , Cao J X , Wang X J , et al. Acoustic log reconstruction based on bidirectional Gated Recurrent Unit (GRU) neural network. Progress in Geophysics, 2022, 37 (1): 357- 366.
勇刚 , 康妮 , . 基于BiGRU-Attention改进的航空设备故障知识图谱构建. 航空学报, 2024, 45 (18): 168- 181.
中钰 , , , 等. 基于CGAN与CNN-GRU组合模型的密度测井曲线重构方法. 地球物理学进展, 2022, 37 (5): 1941- 1945.
, 海峰 , 中元 , 等. 乍得B盆地密度和声波时差曲线异常自动识别与重构. 地球物理学进展, 2018, 33 (5): 1911- 1918.
, 明杰 , 贞超 . 多种测井曲线校正方法在塔中顺9井区的应用. 工程地球物理学报, 2014, 11 (4): 493- 497.
永吉 , , 毛毛 . 基于遗传神经网络算法的测井曲线重构技术. 地球物理学进展, 2021, 36 (3): 1082- 1087.
, 彬森 , 宏亮 , 等. 人工智能在测井地层评价中的应用现状及前景. 石油学报, 2021, 42 (4): 508- 522.
爱疆 , , . 基于岩石物理测试模型的测井曲线校正方法. 中国测试, 2013, 39 (5): 20- 23.
小燕 , . 声波时差测井扩径影响校正方法在煤层气储层中的适用性分析. 地球物理学进展, 2016, 31 (5): 2145- 2149.
, 俊兴 , 加春 . 基于GRU神经网络的测井曲线重构. 石油地球物理勘探, 2020, 55 (3): 510- 520.
俊瑞 , 力文 , , 等. 基于多元回归模型重构测井曲线的方法研究及应用. 岩性油气藏, 2016, 28 (3): 113- 120.
婷婷 , 振豪 , , 等. 基于增强多头注意力机制的Optuna-BiGRU测井岩性识别. 地球科学与环境学报, 2024, 46 (1): 127- 142.
泽峰 , 辉群 , 梦琼 , 等. 应用时域卷积神经网络的地震波阻抗反演方法. 石油地球物理勘探, 2022, 57 (2): 279- 286. 279-286, 296
星宇 , 汉明 , 逸飞 , 等. XGBoost算法在致密砂岩气储层测井解释中的应用. 石油地球物理勘探, 2019, 54 (2): 447- 455.
志力 , , 文利 , 等. BP神经网络技术在声波测井曲线重构中的运用. 西南石油大学学报(自然科学版), 2008, 30 (1): 63- 66.
晓岩 , , 勇根 , 等. 融合注意力机制的二维卷积神经网络测井曲线重构方法. 石油地球物理勘探, 2023, 58 (5): 1031- 1041.
东晓 , 云天 , . 基于循环神经网络的测井曲线生成方法. 石油勘探与开发, 2018, 45 (4): 598- 607.
海涛 , 小明 , , 等. 基于增强双向长短时记忆神经网络的测井数据重构. 地球物理学进展, 2022, 37 (3): 1214- 1222.
家臣 , 金根 , , 等. 基于XGBoost的测井曲线重构方法. 石油地球物理勘探, 2022, 57 (3): 697- 705.
, , 泽扬 . 基于特征构造预处理与TCN-BiGRU的池塘溶解氧预测模型. 上海海洋大学学报, 2023, 32 (5): 943- 952.
, 海航 , 云凤 , 等. 基于串级双向长短时记忆神经网络的测井数据重构. 石油地球物理勘探, 2022, 57 (6): 1473- 1480.
, 俊兴 , 兴建 , 等. 基于双向门控循环单元神经网络的声波测井曲线重构技术. 地球物理学进展, 2022, 37 (1): 357- 366.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(10226 KB)

Accesses

Citation

Detail

Sections
Recommended

/