Seismic data denoising method based on Monte Carlo block pre-training dictionary

Min BAI, ZhaoYang MA, ZiXiang ZHOU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1847-1860.

PDF(10507 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10507 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1847-1860. DOI: 10.6038/pg2025II0152

Seismic data denoising method based on Monte Carlo block pre-training dictionary

Author information +
History +

Abstract

K Singular Value Decomposition (KSVD) dictionary learning has been successfully applied in the field of seismic data denoising. In order to make more efficient, full and accurate use of data, this paper proposes a Monte Carlo-filter dictionary learning (MC-FDL) method based on Monte Carlo segmentation for seismic data denoising, which uses Monte Carlo segmentation method to obtain pre-trained dictionaries, this enables the dictionary to learn the characteristics of the signal to a greater extent. First, the variance of all the data blocks is calculated, a uniformly distributed random number is generated for each data block, and if the variance of the block is greater than the random number, the block is selected as an atom in the dictionary. Then the dictionary is trained and updated by KSVD algorithm, and the interference of noise in dictionary atoms is filtered by median filter to make the dictionary more prominent in the feature of seismic data. After that, the trained dictionary is used for seismic data denoising, and the denoising performance of the proposed method is tested by synthetic and real data. Finally, the influence of different block selection methods and different data preprocessing methods on the denoising results is discussed in detail, and the block selection strategy of the proposed method is determined, and the future work is prospected.

Key words

Seismic data denoising / Dictionary learning / Monte Carlo / Median filtering

Cite this article

Download Citations
Min BAI , ZhaoYang MA , ZiXiang ZHOU. Seismic data denoising method based on Monte Carlo block pre-training dictionary[J]. Progress in Geophysics. 2025, 40(4): 1847-1860 https://doi.org/10.6038/pg2025II0152

References

Abma R , Claerbout J . Lateral prediction for noise attenuation by t-x and f-x techniques. Geophysics, 1995, 60 (6): 1887- 1896.
Aharon M , Elad M , Bruckstein A . K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54 (11): 4311- 4322.
Beckouche S , Ma J W . Simultaneous dictionary learning and denoising for seismic data. Geophysics, 2014, 79 (3): A27- A31.
Bekara M , van der Baan M . Local singular value decomposition for signal enhancement of seismic data. Geophysics, 2007, 72 (2): V59- V65.
Buades A , Coll B , Morel J M . A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 2005, 4 (2): 490- 530.
Candès E , Demanet L , Donoho D , et al. Fast discrete curvelet transforms. Multiscale Modeling & Simulation, 2006, 5 (3): 861- 899.
Chan S H , Zickler T , Lu Y M . Monte Carlo non-local means: Random sampling for large-scale image filtering. IEEE Transactions on Image Processing, 2014, 23 (8): 3711- 3725.
Chen Y K , Ma J W , Fomel S . Double-sparsity dictionary for seismic noise attenuation. Geophysics, 2016, 81 (2): V103- V116.
Chen Y K , Savvaidis A , Fomel S . Dictionary learning for single-channel passive seismic denoising. Seismological Research Letters, 2023, 94 (6): 2840- 2851.
Dabov K , Foi A , Katkovnik V , et al. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2007, 16 (8): 2080- 2095.
Donoho D L , Tsaig Y , Drori I , et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory, 2012, 58 (2): 1094- 1121.
Fomel S . Seismic data decomposition into spectral components using regularized nonstationary autoregression. Geophysics, 2013, 78 (6): O69- O76.
Gao R , Zhao R Z , Hu S H . Variable step size adaptive matching pursuit algorithm for image reconstruction based on compressive sensing. Acta Optica Sinica, 2010, 30 (6): 1639- 1644.
Guo J K , Wu J Y , Yang X J , et al. Ultrasonic nondestructive signals processing based on matching pursuit with Gabor dictionary. Chinese Journal of Mechanical Engineering, 2011, 24 (4): 591- 595.
He Y , Liu J X , Wang X Y , et al. Application of interpolation denoising based on adaptive dictionary learning. Progress in Geophysics, 2021, 36 (6): 2454- 2461.
Hua S H , Han L G . Seismic data denoising method based on deep convolutional auto-encoder network. Progress in Geophysics, 2023, 38 (2): 654- 661.
Huang N E , Shen Z , Long S R , et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903- 995.
Huang W L , Wang R Q , Chen Y K , et al. Damped multichannel singular spectrum analysis for 3D random noise attenuation. Geophysics, 2016, 81 (4): V261- V270.
Li C Y , Zhu Y Z , Yang X , et al. Seismic data denoising method based on Noise-to-Noise self-supervised learning. Progress in Geophysics, 2023, 38 (2): 662- 676.
Liu Y , Fomel S , Liu C , et al. High-order seislet transform and its application of random noise attenuation. Chinese Journal of Geophysics, 2009, 52 (8): 2142- 2151.
Moore J, McLennan J, Allis R, et al. 2018. The Utah frontier observatory for geothermal research (forge): Results of recent drilling and geoscientific surveys. //Presented at the Geothermal Resources Council 42nd Annual Meeting-Geothermal Energy.
Mousavi S M , Langston C A , Horton S P . Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform. Geophysics, 2016, 81 (4): V341- V355.
Mu T. 2022. Seismic data denoising using dictionary learning and Monte Carlo-patch selection [Master's thesis] (in Chinese). Guilin: Guilin University of Technology.
Needell D , Vershynin R . Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 2009, 9 (3): 317- 334.
Olshausen B A , Field D J . Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381 (6583): 607- 609.
Saad O M , Chen Y K . Deep denoising autoencoder for seismic random noise attenuation. Geophysics, 2020, 85 (4): V367- V376.
Saad O M , Chen Y K . A fully unsupervised and highly generalized deep learning approach for random noise suppression. Geophysical Prospecting, 2021, 69 (4): 709- 726.
Sacchi M D. 2009. FX singular spectrum analysis. //CSPG CSEG CWLS Convention. Calgary, 392-395.
Sadeghi M , Babaie-Zadeh M , Jutten C . Dictionary learning for sparse representation: A novel approach. IEEE Signal Processing Letters, 2013, 20 (12): 1195- 1198.
Sahoo S K , Makur A . Dictionary training for sparse representation as generalization of K-means clustering. IEEE Signal Processing Letters, 2013, 20 (6): 587- 590.
Shi Z Z , Pang S , Wang Y J , et al. Random noise attenuation of common offset gathers by f-x TV regularization. Progress in Geophysics, 2022, 37 (3): 1148- 1158.
Siahsar M A N , Gholtashi S , Kahoo A R , et al. Data-driven multitask sparse dictionary learning for noise attenuation of 3D seismic data. Geophysics, 2017, 82 (6): V385- V396.
Smith L N , Elad M . Improving dictionary learning: multiple dictionary updates and coefficient reuse. IEEE Signal Processing Letters, 2013, 20 (1): 79- 82.
Trickett S. 2008. F-xy Cadzow noise suppression. //SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 2586-2590.
Wang H , Chen W , Huang W L , et al. Nonstationary predictive filtering for seismic random noise suppression-A tutorial. Geophysics, 2021, 86 (3): W21- W30.
Wu X L. 2022. SimCLR-based data driven tight frame for seismic denoising and reconstruction[Master's thesis] (in Chinese). Guilin: Guilin University of Technology.
Yu S W , Ma J W , Osher S . Monte Carlo data-driven tight frame for seismic data recovery. Geophysics, 2016, 81 (4): V327- V340.
Yu S W. 2017. Seismic data reconstruction based on adaptive sparse inversion[Ph. D. thesis] (in Chinese). Harbin: Harbin Institute of Technology.
Zhou Z X , Wu J , Yuan C , et al. A novel K-SVD dictionary learning approach for seismic data denoising. Oil Geophysical Prospecting, 2023, 58 (5): 1072- 1083.
, 瑞珍 , 绍海 . 基于压缩感知的变步长自适应匹配追踪重建算法. 光学学报, 2010, 30 (6): 1639- 1644.
, 建新 , 显莹 , 等. 基于自适应字典学习的插值去噪的应用. 地球物理学进展, 2021, 36 (6): 2454- 2461.
世辉 , 立国 . 基于深度卷积自编码网络地震数据去噪方法. 地球物理学进展, 2023, 38 (2): 654- 661.
从昀 , 亚洲 , , 等. 基于Noise-to-Noise自监督学习的地震数据去噪方法. 地球物理学进展, 2023, 38 (2): 662- 676.
, Fomel S , , 等. 高阶seislet变换及其在随机噪声消除中的应用. 地球物理学报, 2009, 52 (8): 2142- 2151.
穆桐. 2022. 基于蒙特卡洛分块理论的字典学习地震数据去噪研究[硕士论文]. 桂林: 桂林理工大学.
战战 , , 元君 , 等. 基于f-x域TV正则化的共偏移距道集随机噪声压制方法. 地球物理学进展, 2022, 37 (3): 1148- 1158.
吴相伶. 2022. 基于SimCLR算法的数据驱动紧支撑框架地震数据去噪与重建[硕士论文]. 桂林: 桂林理工大学.
于四伟. 2017. 基于自适应稀疏反演的地震数据重构[博士论文]. 哈尔滨: 哈尔滨工业大学.
子翔 , , , 等. 一种新的K-SVD字典学习地震数据去噪方法. 石油地球物理勘探, 2023, 58 (5): 1072- 1083.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(10507 KB)

Accesses

Citation

Detail

Sections
Recommended

/