Analysis of the differences between AOD1B RL07 and RL06 models and their impact on the inversion of GRACE time-varying gravity field model

Chong LIU, Wei YOU, JiaHui ZHANG, XiangYu WAN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 1890-1904.

PDF(11597 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11597 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 1890-1904. DOI: 10.6038/pg2025II0155

Analysis of the differences between AOD1B RL07 and RL06 models and their impact on the inversion of GRACE time-varying gravity field model

Author information +
History +

Abstract

The high-frequency mass variations of the atmosphere and oceans have significant impacts on the inversion of time-variable Earth gravity fields using GRACE. This paper comprehensively compares and analyzes the atmospheric and oceanic components, as well as their combination, of the AOD1B RL06 and RL07 products released by GFZ using methods including spectral domain analysis, comparison of low-order terms, spatial analysis, principal component analysis, and inversion of time-variable gravity field models. The results show that the differences between the two sets of products in the spectral domain are relatively small, with the main differences being reflected in the oceanic component. However, the comparison results in the spatial domain indicate significant differences in the equivalent water heights of the oceanic component, reaching the decimeter level. The differences between the 60th order time-variable gravity field models inverted based on RL06 and RL07 are relatively small, with differences in the spectral domain mainly concentrated in medium to high orders. The RMS differences of the KBRR residuals after validation for both sets of time-variable models are less than 3.912 nm/s (correlation coefficient: 0.999). However, the KBRR residuals computed based on RL07 products are generally smaller, demonstrating the slight advantage of RL07 in the inversion of time-variable Earth gravity field models.

Key words

AOD1B RL07 / GRACE / Gravity fields / Atmosphere and oceans

Cite this article

Download Citations
Chong LIU , Wei YOU , JiaHui ZHANG , et al. Analysis of the differences between AOD1B RL07 and RL06 models and their impact on the inversion of GRACE time-varying gravity field model[J]. Progress in Geophysics. 2025, 40(5): 1890-1904 https://doi.org/10.6038/pg2025II0155

References

Boy J P, Chao B F. Precise evaluation of atmospheric loading effects on Earth's time-variable gravity field. Journal of Geophysical Research: Solid Earth, 2005, 110(B8): B08412
Chen Q J, Wang F W, Shen Y Z, et al. Monthly gravity field solutions from early LEO satellites' observations contribute to global ocean mass change estimates over 1993—2004. Geophysical Research Letters, 2022, 49(21): e2022GL099917
Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553- 597.
Dobslaw H, Thomas M. Atmospheric induced oceanic tides from ECMWF forecasts. Geophysical Research Letters, 2005, 32(10): L10615
Dobslaw H, Bergmann-Wolf I, Dill R, et al. The updated ESA Earth System Model for future gravity mission simulation studies. Journal of Geodesy, 2015, 89(5): 505- 513.
Dobslaw H, Bergmann-Wolf I, Dill R, et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophysical Journal International, 2017, 211(1): 263- 269.
Duan J B, Shum C K, Guo J Y, et al. Uncovered spurious jumps in the GRACE atmospheric de-aliasing data: potential contamination of GRACE observed mass change. Geophysical Journal International, 2012, 191(1): 83- 87.
Flechtner F. 2007. AOD1B product description document for product releases 01 to 04 (Rev. 3.1, April 13, 2007). GRACE Project Document, 327-750.
Flechtner F, Thomas M, Dobslaw H. 2010. Improved non-tidal atmospheric and oceanic de-aliasing for GRACE and SLR satellites. //Flechtner F M, Gruber T, Güntner A, et al eds. System Earth via Geodetic-Geophysical Space Techniques. Berlin, Heidelberg: Springer, 131-142.
Flechtner F, Dobslaw H, Fagiolini E. 2015. AOD1B product description document for product release 05 (Rev. 4.3, April 23, 2015).
Forootan E, Didova O, Kusche J, et al. Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2382- 2396.
Forootan E, Didova O, Schumacher M, et al. Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003-2011. Journal of Geodesy, 2014, 88(5): 503- 514.
Gegout P, Cazenave A. Temporal variations of the Earth gravity field for 1985-1989 derived from Lageos. Geophysical Journal International, 1993, 114(2): 347- 359.
Hardy R A, Nerem R S, Wiese D N. The impact of atmospheric modeling errors on GRACE estimates of mass loss in Greenland and Antarctica. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10440- 10458.
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999- 2049.
Hofmann-Wellenhof B, Moritz H. Fizicheskaya geodeziya Physical Geodesy. Moscow: MIIGAiK, 2007
Hsu H Z, Lu Y, Zhong M, et al. Satellite gravity and its application to monitoring geophysical environmental change. Sci Sin Terrae, 2012, 42(6): 843- 853.
Jolliffe I T. 2002. Principal component analysis for special types of data. //Jolliffe I T ed. Principal Component Analysis. New York: Springer.
Jungclaus J H, Fischer N, Haak H, et al. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. Journal of Advances in Modeling Earth Systems, 2013, 5(2): 422- 446.
Karbon M, Wijaya D, Schindelegger M, et al. Atmospheric effects on the Earth gravity field featured by TU Vienna. Österreichische Z Vermessung Geoinform, 2011, 99(2): 122- 130.
Lecomte H, Rosat S, Mandea M, et al. Uncertainty of low-degree space gravimetry observations: Surface processes versus Earth's core signal. Journal of Geophysical Research: Solid Earth, 2023, 128(7): e2023JB026503
Marsland S J, Haak H, Jungclaus J H, et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvi-linear coordinates. Ocean Modelling, 2003, 5(2): 91- 127.
Ning J S. The satellite gravity surveying technology and research of earth's gravity feld. Journal of Geodesy and Geodynamics, 2002, 22(1): 1- 5.
Shihora L, Sulzbach R, Dobslaw H, et al. Self-attraction and loading feedback on ocean dynamics in both shallow water equations and primitive equations. Ocean Modelling, 2022a, 169: 101914
Shihora L, Balidakis K, Dill R, et al. Non-tidal background modeling for satellite gravimetry based on operational ECWMF and ERA5 reanalysis data: AOD1B RL07. Journal of Geophysical Research: Solid Earth, 2022b, 127(8): e2022JB024360
Shihora L, Liu Z J, Balidakis K, et al. Accounting for residual errors in atmosphere-ocean background models applied in satellite gravimetry. Journal of Geodesy, 2024, 98(4): 27
Swenson S, Wahr J. Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid. Journal of Geophysical Research: Solid Earth, 2002, 107(B9): ETG 4-1- ETG 4-11.
Tapley B D, Bettadpur S, Watkins M, et al. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 2004, 31(9): L09607
Uppala S M, Kållberg P W, Simmons A J, et al. The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 2005, 131(612): 2961- 3012.
Yang F. 2017. Recovery and refinement of the earth temporal gravity fields from GRACE obervations[Ph. D. thesis](in Chinese). Wuhan: Huazhong University of Science & Technology.
Yang F, Forootan E, Schumacher M, et al. Evaluating non-tidal atmospheric products by measuring GRACE K-band range rate residuals. Geophysical Journal International, 2018, 215(2): 1132- 1147.
Yang F, Forootan E, Wang C Q, et al. A New 1-hourly ERA5-based atmosphere de-aliasing product for GRACE, GRACE-FO, and future gravity missions. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB021926
You W. Using high spatial-resolution regional atmospheric data for computation of GRACE atmospheric de-aliasing models. Acta Geodaetica et Cartographica Sinica, 2017a, 46(3): 316- 324.
You W. Impact of spherical harmonic analysis methods on the computation of GRACE atmosphere de-aliasing models. Journal of Geodesy and Geodynamics, 2017b, 37(4): 397- 402.
You W, Su Y, Yu B, et al. Computation of GRACE atmospheric de-aliasing models using ERA-interim data. Geomatics and Information Science of Wuhan University, 2017, 42(6): 810- 816.
You W, Xiong D W, Fang W H. Strategies and analysis for the computation of GRACE atmospheric de-aliasing models. Progress in Geophysics, 2023, 38(3): 1059- 1073.
厚泽, , , 等. 卫星重力测量及其在地球物理环境变化监测中的应用. 中国科学: 地球科学, 2012, 42(6): 843- 853.
杨帆. 2017. GRACE时变重力场的解算和精化[博士论文]. 武汉: 华中科技大学.
游为. 2017a. 利用局部高空间分辨率大气数据计算GRACE大气去混频模型. 测绘学报, 46(3): 316-324. [31]宁津生. 2002. 卫星重力探测技术与地球重力场研究. 大地测量与地球动力学, 22(1): 1-5.
. 球谐分析方法对GRACE大气去混频模型计算的影响. 大地测量与地球动力学, 2017b, 37(4): 397- 402.
, , , 等. 利用ERA-Interim数据计算GRACE大气去混频模型. 武汉大学学报(信息科学版), 2017, 42(6): 810- 816.
, 大伟, 伟浩. GRACE大气去混频模型计算的若干策略分析. 地球物理学进展, 2023, 38(3): 1059- 1073.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(11597 KB)

Accesses

Citation

Detail

Sections
Recommended

/