Review of research methods on water production mechanisms in tight sandstone gas reservoirs

ZiHao HAN, ZhanSong ZHANG, JianHong GUO, Hao ZHANG, Jian SONG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 619-633.

PDF(4211 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4211 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 619-633. DOI: 10.6038/pg2025II0171

Review of research methods on water production mechanisms in tight sandstone gas reservoirs

Author information +
History +

Abstract

Tight sandstone gas reservoirs, as a crucial component of global unconventional natural gas resources, face challenges in efficient development due to the unclear water production mechanisms. This paper systematically reviews the research methods for studying water production mechanisms in tight sandstone gas reservoirs through a literature survey, providing more comprehensive theoretical and methodological support to address this issue. The research methods are primarily categorized into three types: theoretical and model analysis, experimental analysis, and produced water characteristic analysis. Theoretical analysis integrates theories related to gas and water occurrence, revealing the distribution, flow, and interactions of gas and water in reservoirs at both macro and micro levels. Experimental analysis verifies the flow characteristics of gas and water and the water production mechanisms through methods such as Nuclear Magnetic Resonance (NMR) experiments, capillary pressure experiments, and gas drive water experiments. The produced water characteristic analysis method uses field production data and water sample chemical compositions to determine the type of water production and, combined with the first two methods, specifically analyzes the gas-water occurrence state and water production mechanisms. The results indicate that analyzing water production mechanisms in tight sandstone gas reservoirs requires a comprehensive application of multiple methods to enhance predictive accuracy. The paper concludes with a discussion and outlook on the development trends and existing achievements in reservoir water production mechanism research methods, proposing improvements in predictive accuracy through cross-validation, refining experimental processes, and employing chemical or isotope analysis techniques combined with big data and artificial intelligence algorithms to further enhance the accuracy and applicability of water production mechanism research.

Key words

Tight sandstone gas reservoir / Water production mechanism / Produced water characteristics / Review

Cite this article

Download Citations
ZiHao HAN , ZhanSong ZHANG , JianHong GUO , et al . Review of research methods on water production mechanisms in tight sandstone gas reservoirs[J]. Progress in Geophysics. 2025, 40(2): 619-633 https://doi.org/10.6038/pg2025II0171

References

Bahrami N, Dousi N, Lashari A. 2015. Evaluation of damage mechanisms in tight gas reservoirs: integration of laboratory experiments and field data with numerical simulation. //SPE Offshore Europe Conference and Exhibition. Aberdeen, Scotland, UK: SPE, doi: 10.2118/175433-MS.
Cao R Y , Ye L Y , Lei Q H , et al. Gas-water flow behavior in water-bearing tight gas reservoirs. Geofluids, 2017, 2017: 9745795
Chen F H , Wang Z D , Fu S S , et al. Research on transformation of connate water to movable water in water-bearing tight gas reservoirs. Energies, 2023, 16 (19): 6961
Chen L , Zhang Y C , Tang T , et al. Analysis and identification of producing water source in reef-bank gas reservoirs. Fault-Block Oil & Gas Field, 2013, 20 (4): 481- 484.
Chen X , Ma L T , Shi C L , et al. Water occurrence and identification method of the water-bearing degree of tight sandstone reservoirs in the Linxing Block. Geology and Exploration, 2022, 58 (6): 1331- 1340.
Cui M M , Wang Z X , Fan A P , et al. Characteristics of formation water and gas-water relation in Southwest Sulige Gas Field, Ordos Basin. Natural Gas Geoscience, 2018, 29 (9): 1364- 1375.
Dong H K , Li X F , Cheng S Q . Pressure-sensitive effect study of movable water saturation in gas reservoirs by block model. Natural Gas Industry, 2004, 24 (12): 111- 112.
Dou W T , Liu X S , Wang T . The origin of formation water and the regularity of gas and water distribution for the Sulige gas field, Ordos Basin. Acta Petrolei Sinica, 2010, 31 (5): 767- 773.
Elputranto R , Akkutlu I Y . Near-fracture capillary end effect on shale-gas and water production. SPE Journal, 2020, 25 (4): 2041- 2054.
Fan J J, Zhou H M, Liu S B, et al. 2013. Gas-water two phases flow characterization and its influencing factors in low permeability tight sandstone. //Unconventional Resources Technology Conference. Denver, Colorado: SEG, 2665-2671, doi: 10.1190/urtec2013-278.
Fu X , Agostini F , Skoczylas F , et al. Experimental study of the stress dependence of the absolute and relative permeabilities of some tight gas sandstones. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 36- 43.
Gao S S , Hou J R , Yang H Z , et al. Water production mechanism of Xujiahe low-permeability sandstone gas reservoirs in Middle Sichuan Basin. Natural Gas Industry, 2012, 32 (11): 40- 42.
Gao S S , Ye L Y , Xiong W , et al. Seepage mechanism and strategy for development of large and low permeability and tight sandstone gas reservoirs with water content. Journal of Oil and Gas Technology, 2013, 35 (7): 93- 99.
Guo C H , Zhou W , Kang Y L , et al. A comprehensive estimation method on the origin of water produced in gas wells of Jingbian gas field. Natural Gas Industry, 2007, 27 (10): 97- 99.
Guo P , Huang W G , Jiang Y W , et al. Research on the irreducible and movable water of tight sandstone gas reservoir. Natural Gas Industry, 2006, 26 (10): 99- 101.
Guo P , Xu Y G , Chen Z Y , et al. New ideas obtained from laboratory study of flowing mechanisms in low-permeability reservoirs. Natural Gas Industry, 2007, 27 (7): 86- 88.
Heng Y. 2018. Gas-water distribution and the countermeasures of water-government based on reservoir architecture-taking the low permeability sandstone reservoirs of the 8th member of Xiashihezi Formation[Ph. D. thesis] (in Chinese). Chengdu: Chengdu University of Technology.
Hu Y , Shao Y , Lu Y L , et al. Experimental study on occurrence models of water in pores and the influencing to the development of tight gas reservoir. Natural Gas Geoscience, 2011, 22 (1): 176- 181.
Hu Y , Li X Z , Lu X G , et al. Varying law of water saturation in the depletion-drive development of sandstone gas reservoirs. Petroleum Exploration and Development, 2014, 41 (6): 723- 726.
Huang W G , Guo P , Jiang Y W , et al. Movable water experiments of Qiao-Bai gas reservoirs. Natural Gas Exploration and Development, 2005, 28 (2): 39- 42.
Ji W, Liu Z D, Xiang W, et al. 2024. Calculation of T2 cutoff value by integrating Gaussian function and reservoir classification fitting method. Progress in Geophysics (in Chinese), 1-11. http://kns.cnki.net/kcms/detail/11.2982.P.20241205.1026.027.html.
Karadimitriou N K, Hassanizadeh S M. 2012. A review of micromodels and their use in two-phase flow studies. Vadose Zone Journal, 11(3): vzj2011.0072, doi: 10.2136/vzj2011.0072.
Kong L R , Qu Z H , Wan F B , et al. Experiments of two fluid phase displacement in sandstone micromodels. Petroleum Exploration and Development, 1991, 12 (4): 79- 85.
Lai F P , Li Z P , Wei H X , et al. Characterization of the generalized permeability jail in tight reservoirs by analyzing relative-permeability curves and numerical simulation. Petroleum Science, 2023, 20 (5): 2939- 2950.
Li G Q , Chen Y L , Jia H C , et al. Occurrence and distribution characteristics of fluids in tight sandstone reservoirs in the Shilijiahan zone, northern Ordos Basin. Natural Gas Industry, 2017, 37 (2): 11- 18.
Li G X , Lei Z D , Dong W H , et al. Progress, challenges and prospects of unconventional oil and gas development of CNPC. China Petroleum Exploration, 2022, 27 (1): 1- 11.
Li H B , Guo H K , Li H J , et al. Thickness analysis of bound water film in tight reservoir. Natural Gas Geoscience, 2015, 26 (1): 186- 192.
Li J , Wang X H , Zhu L Y , et al. A study of comprehensive discriminant methods of the source of water-yielding in gas reservoirs. Natural Gas Geoscience, 2012, 23 (6): 1185- 1190.
Liang J W , Li R X , Chen Y L . Geochemical behaviors and genesis of formation water in 8th Member of Xiashihezi Formation in western Sulige gas field, Ordos Basin. Oil and Gas Geology, 2013, 34 (5): 625- 630.
Lionel C , Fu X W , Ioannis N , et al. An experimental study of secondary oil migration. AAPG Bulletin, 1992, 76 (5): 638- 650.
Liu D X , Yue X A , Hou J R , et al. Experimental study of adsorded water layer on solid particle surface. Acta Mineralogica Sinica, 2005, 25 (1): 15- 19.
Liu G F , Wang W J , Zhang H L , et al. Study on calculation method of irreducible water saturation in tight sandstone gas reservoirs based on fractal theory. Journal of Shaanxi University of Science and Technology, 2017, 35 (1): 110- 113.
Mehmani A , Milliken K , Prodanovié M . Predicting flow properties in diagenetically-altered media with multi-scale process-based modeling: A Wilcox Formation case study. Marine and Petroleum Geology, 2019, 100: 179- 194.
Meng D W , Jia A L , Ji G , et al. Water and gas distribution and its controlling factors of large scale tight sand gas: A case study of western Sulige gas field, Ordos Basin, NW China. Petroleum Exploration and Development, 2016, 43 (4): 607- 614. 607-614, 635
Mo S Y , He S L , Lei G , et al. Effect of the drawdown pressure on the relative permeability in tight gas: A theoretical and experimental study. Journal of Natural Gas Science and Engineering, 2015, 24: 264- 271.
Montemagno C D , Gray W G . Photoluminescent volumetric imaging: A technique for the exploration of multiphase flow and transport in porous media. Geophysical Research Letters, 1995, 22 (4): 425- 428.
Qu Z H , Kong L R . Study on the formation of residual water with transparent porous models. Petroleum Geology & Experiment, 1986, 8 (1): 72- 78.
Shanley K W , Cluff R M , Robinson J W . Factors controlling prolific gas production from low-permeability sandstone reservoirs: Implications for resource assessment, prospect development, and risk analysis. AAPG Bulletin, 2004, 88 (8): 1083- 1121.
Sheng J , Sun W , Duan B H , et al. Water lock effect mechanism of tight sandstone gas reservoir: An example of the He 8 Reservoir of the Upper Paleozoic in the southeast region of Sulige gasfield. Natural Gas Geoscience, 2015, 26 (10): 1972- 1978.
Shi P Y , Xu S H , Feng J M , et al. Log identification of fluid types in tight sandstone reservoirs using an improved Stacking algorithm. Progress in Geophysics, 2024, 39 (1): 280- 290.
Shi Q. 2019. Activation characteristics of bound water in tight gas reservoirs and development strategies. //Proceedings of the 31st National Natural Gas Academic Annual Conference (2019) (in Chinese). Hefei, 436-444, doi: 10.26914/c.cnkihy.2019.071472.
Sima L Q , Wang C , Wang L , et al. Effect of pore structure on the seepage characteristics of tight sandstone reservoirs: A case study of Upper Jurassic Penglaizhen Fm reservoirs in the western Sichuan Basin. Natural Gas Industry, 2016, 36 (12): 18- 25.
Sun H F , Wang X L , Cheng Y C , et al. The application of water source identification to control water breakthrough in gas wells of the Sebei gas field. Natural Gas Industry, 2009, 29 (7): 76- 78.
Sun L D , Zou C N , Jia A L , et al. Development characteristics and orientation of tight oil and gas in China. Petroleum Exploration and Development, 2019, 46 (6): 1015- 1026.
Tian J , Kang Y L , You L J , et al. Investigation on water phase trapping mechanisms in tight gas reservoirs: Pore-scale visualization observation and core-scale flooding analysis. Journal of Petroleum Science & Engineering, 2021, 198: 108185
Tian L , He S L , Liu S J , et al. Features of gas and water distribution in the Xujiahe formation gas reservoir of Guang'an area. Natural Gas Industry, 2009, 29 (6): 23- 26.
Tian W B , Li A F , Ren X X , et al. The threshold pressure gradient effect in the tight sandstone gas reservoirs with high water saturation. Fuel, 2018, 226: 221- 229.
Wang C. 2017. Pore structure evaluation and microscopic gas-water occurrence mechanism of tight sandstone reservoirs in Penglaizhen Formation, Western Sichuan[Master's thesis] (in Chinese). Chengdu: Southwest Petroleum University.
Wang J , Kang Y S , Jiang S Y , et al. Reasons for water production difference of CBM wells in Shouyang Block, Qinshui Basin, and prediction on favorable areas. Natural Gas Industry, 2016, 36 (8): 52- 59.
Wang L , Yang S L , Peng X , et al. Visual experiments on the occurrence characteristics of multi-type reservoir water in fracture-cavity carbonate gas reservoir. Acta Petrolei Sinica, 2018, 39 (6): 686- 696.
Wang R F , Chen M Q . Characteristics and influencing factors of movable fluid in ultra-low permeability sandstone reservoir. Acta Petrolei Sinica, 2008, 29 (4): 558- 561. 558-561, 566
Wang X M , Zhao J Z , Liu X S . Occurrence state and production mechanism of formation water in tight sandstone reservoirs of Sulige area, Ordos Basin. Petroleum Geology & Experiment, 2012, 34 (4): 400- 405.
Wang Y X , Xie B , Lai Q , et al. Evaluation of pore structure and classification in tight gas reservoir based on NMR logging. Progress in Geophysics, 2023, 38 (2): 759- 767.
Wang L Y , Yang H Z , Ye L Y , et al. Movable water saturation used for the forecast of water production features in gas wells in the Xujiahe Formation of Middle Sichuan Basin. Natural Gas Industry, 2012, 32 (11): 47- 50.
Wu J B , Wang R F , Yang C , et al. Micro nano pore throat CT imaging ball stick model of tight sandstone gas reservoir in Ordos Basin. Progress in Geophysics, 2023, 38 (1): 337- 347.
Xiao X , Wang Z H , Ye Y F , et al. Novel porosity prediction method for tight sandstone reservoirs: a case study of member of He8, Ordos Basin, Northern China. Progress in Geophysics, 2024, 39 (4): 1597- 1606.
Xie Y G, Shi H Q, Li X L, et al. 2024. Study on microscopic damage characteristics of fracturing fluids in different types of tight sandstone reservoirs based on nuclear magnetic resonance technology. Progress in Geophysics (in Chinese), 1-13. http://kns.cnki.net/kcms/detail/11.2982.p.20240905.1738.042.html.
Xiong Z, Gao H, Liu J, et al. 2018. Study on microscopic seepage and water production mechanism in tight sandstone gas reservoirs of Western Sulige. //2018 China Oil & Gas Development Technology Conference (in Chinese). Beijing: Chinese Petroleum Society, 306-315.
Xu W P , Wu C D , Guan P , et al. Prediction of free water in the unconsolidated sandstone reservoir in the quaternary gas field, Qaidam Basin. Natural Gas Geoscience, 2012, 23 (5): 952- 955.
Yang M P , Li Y , Peng C Z . Analysis of stress sensitivity for irreducible water of gas reservoir. Natural Gas Geoscience, 2004, 15 (4): 391- 394.
Yang Y , Gu D Y , Lian Y X , et al. Mechanisms and prevention & control countermeasures of water breakthrough in horizontal wells in multi-layer unconsolidated sandstone gas reservoirs: A case study of the Tainan Gas Field in the Qaidam Basin. Natural Gas Industry, 2019, 39 (5): 85- 92.
Ye L Y , Gao S S , Xiong W , et al. Demonstration of mobile water saturation as evaluation parameter of low permeability sandstone gas reservoir. Journal of Oil and Gas Technology, 2011, 33 (1): 57- 59.
Ye L Y , Gao S S , Yang H Z , et al. Water production mechanism and development strategy of tight sandstone gas reservoirs. Natural Gas Industry, 2015, 35 (2): 41- 46.
Zeng J B , Zheng Q W , Xie X Q , et al. New method of saturation calculation based on NMR experiment and application. Progress in Geophysics, 2023, 38 (3): 1228- 1237.
Zhang C , Zhang C M , Zhang Z S , et al. Comparative experimental study of the core irreducible water saturation of tight gas reservoir. Natural Gas Geoscience, 2016, 27 (2): 352- 358.
Zhang H T , Shi Z . Characteristic of water bearing formation and well logging identification method of gas reservoir in Sulige gas field. Journal of Jilin University (Earth Science Edition), 2010, 40 (2): 447- 454.
Zhang J, Gao S S, Ye L Y, et al. 2019a. Relationship Between Reservoir Movable Water Saturation and Gas Reservoir Water Production Characteristics. //Proceedings of the 31st National Natural Gas Academic Annual Conference (2019), (02 Gas Reservoir Development) (in Chinese). Hefei, 70-80.
Zhang J , Li X Z , Gao S S , et al. Water production mechanism of tight sandstone gas reservoir and its influence on percolation capacity. Natural Gas Geoscience, 2019b, 30 (10): 1519- 1530.
Zhang J , Li X Z , Shen W J , et al. Study of the effect of movable water saturation on gas production in tight sandstone gas reservoirs. Energies, 2020, 13 (18): 4645
Zhang J. 2021. Research on production mechanism and main controlling factors of pore water in tight sandstone gas reservoirs[Ph. D. thesis] (in Chinese). Langfang: University of Chinese Academy of Sciences (Institute of Porous Flow and Fluid Mechanics, China National Petroleum Corporation & Chinese Academy of Sciences).
Zhang L N , Li X P , Zhao C S , et al. The judgement on the origin and the phase state in underground reservoir of produced water in gas well. Journal of Daqing Petroleum Institute, 1993, 17 (2): 107- 111.
Zhang R , Gao Y , Zhang Y B , et al. Gas and water seepage of tight gas and its application in well production analysis. Geofluids, 2023, 2023: 5157780
Zhang W , Han X G , Xu W , et al. Water production analysis and water-control production of gas wells in eastern Sulige gasfield. Special Oil & Gas Reservoirs, 2016, 23 (5): 103- 105.
Zhang P P . Application of physical simulation of seepage mechanism to the study of reasons of water breakthrough in gas wells: A case study of the Sebei gas field. Natural Gas Industry, 2009, 29 (7): 64- 67.
Zhang X Q , Dai Z , Liu L , et al. Application of theory of water film to reform the reservoir in tight and low permeability sandstone. Journal of Mineralogy and Petrology, 1998, 18 (S1): 161- 163.
Zhong T , Xia Y , Liu C X , et al. High watercut characteristics and water-producing mechanisms in tight sandstone gas reservoirs, Xihu sag, East China Sea. Natural Gas Exploration and Development, 2018, 41 (3): 75- 80.
Zhou J J , Li Y C , Song D B , et al. Water production pattern of Daniudi low-permeability gas field, Ordos Basin. Oil and Gas Geology, 2011, 32 (6): 946- 951.
Zhou N W , Lu S F , Zhang P F , et al. Tight gas charging and accumulation mechanisms and mathematical model. Petroleum Exploration and Development, 2023, 50 (6): 1411- 1425.
Zhou Y Q , Zhang J J , Zhang G Z , et al. Research on rock physical modeling and "sweet spot" prediction methods for tight sandstone reservoirs. Progress in Geophysics, 2025, 40 (1): 255- 265.
Zhu H Y , Zhou J , Wan Y J , et al. Microscopic mechanism study of gas-water flow in porous media. Petroleum Geology & Experiment, 2004, 26 (6): 571- 573.
Zhu H Y , Xu X , An L Z , et al. An experimental on occurrence and mobility of pore water in tight gas reservoirs. Acta Petrolei Sinica, 2016, 37 (2): 230- 236.
Zou C N , Lin M J , Ma F , et al. Development, challenges and strategies of natural gas industry under carbon neutral target in China. Petroleum Exploration and Development, 2024, 51 (2): 418- 435.
, 友彩 , , 等. 礁滩气藏产水来源分析与识别. 断块油气田, 2013, 20 (4): 481- 484.
, 立涛 , 长林 , 等. 临兴区块致密砂岩储层水赋存状态及气层含水程度识别方法. 地质与勘探, 2022, 58 (6): 1331- 1340.
明明 , 宗秀 , 爱萍 , 等. 鄂尔多斯盆地苏里格气田西南部地层水特征与气水关系. 天然气地球科学, 2018, 29 (9): 1364- 1375.
红坤 , 相方 , 时清 . 利用方块模型研究气藏可动水饱和度的压敏效应. 天然气工业, 2004, 24 (12): 111- 112.
伟坦 , 新社 , . 鄂尔多斯盆地苏里格气田地层水成因及气水分布规律. 石油学报, 2010, 31 (5): 767- 773.
树生 , 吉瑞 , 洪志 , 等. 川中地区须家河组低渗透砂岩气藏产水机理. 天然气工业, 2012, 32 (11): 40- 42.
树生 , 礼友 , , 等. 大型低渗致密含水气藏渗流机理及开发对策. 石油天然气学报, 2013, 35 (7): 93- 99.
春华 , , 毅力 , 等. 靖边气田气井产水成因综合判断方法. 天然气工业, 2007, 27 (10): 97- 99.
, 伟岗 , 贻伟 , 等. 致密气藏束缚与可动水研究. 天然气工业, 2006, 26 (10): 99- 101.
, 永高 , 召佑 , 等. 对低渗气藏渗流机理实验研究的新认识. 天然气工业, 2007, 27 (7): 86- 88.
衡勇. 2018. 基于储层构型分析的气水分布规律及治水对策研究——以苏里格南区盒8段低渗砂岩气藏为例[博士论文]. 成都: 成都理工大学.
, , 永亮 , 等. 低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响. 天然气地球科学, 2011, 22 (1): 176- 181.
, 熙喆 , 祥国 , 等. 砂岩气藏衰竭开采过程中含水饱和度变化规律. 石油勘探与开发, 2014, 41 (6): 723- 726.
伟岗 , , 怡伟 , 等. 桥白气藏可动水实验研究. 天然气勘探与开发, 2005, 28 (2): 39- 42.
嵇雯, 刘之的, 向威, 等. 2025. 融合高斯函数与储层分类拟合法计算T2截止值. 地球物理学进展, 1-11, http://kns.cnki.net/kcms/detail/11.2982.P.20241205.1026.027.html.
令荣 , 志浩 , 发宝 , 等. 砂岩微观孔隙模型两相驱替实验. 石油勘探与开发, 1991, 12 (4): 79- 85.
功强 , 雨霖 , 会冲 , 等. 鄂尔多斯盆地北部十里加汗区带致密砂岩储层流体赋存状态及分布特征. 天然气工业, 2017, 37 (2): 11- 18.
国欣 , 征东 , 伟宏 , 等. 中国石油非常规油气开发进展、挑战与展望. 中国石油勘探, 2022, 27 (1): 1- 11.
海波 , 和坤 , 海舰 , 等. 致密储层束缚水膜厚度分析. 天然气地球科学, 2015, 26 (1): 186- 192.
, 新海 , 黎鹞 , 等. 气藏产水来源综合判别方法研究. 天然气地球科学, 2012, 23 (6): 1185- 1190.
积伟 , 荣西 , 玉良 . 鄂尔多斯盆地苏里格气田西部盒8段地层水地球化学特征及成因. 石油与天然气地质, 2013, 34 (5): 625- 630.
德新 , 湘安 , 吉瑞 , 等. 固体颗粒表面吸附水层厚度实验研究. 矿物学报, 2005, 25 (1): 15- 19.
广峰 , 文举 , 红玲 , 等. 基于分形理论的致密气藏束缚水饱和度计算模型研究. 陕西科技大学学报, 2017, 35 (1): 110- 113.
德伟 , 爱林 , , 等. 大型致密砂岩气田气水分布规律及控制因素——以鄂尔多斯盆地苏里格气田西区为例. 石油勘探与开发, 2016, 43 (4): 607- 614. 607-614, 635
志浩 , 令荣 . 用透明孔隙模型研究油层残余水的形成. 石油实验地质, 1986, 8 (1): 72- 78.
, , 宝虹 , 等. 致密砂岩气藏水锁效应机理探析——以苏里格气田东南区上古生界盒8段储层为例. 天然气地球科学, 2015, 26 (10): 1972- 1978.
鹏宇 , 思慧 , 加明 , 等. 基于改进Stacking算法的致密砂岩储层测井流体识别. 地球物理学进展, 2024, 39 (1): 280- 290.
石强. 2019. 致密气层束缚水"活化"特征及开发对策. //第31届全国天然气学术年会(2019). 合肥, 436-444, doi: 10.26914/c.cnkihy.2019.071472.
司马 立强 , , , 等. 致密砂岩储层孔隙结构对渗流特征的影响——以四川盆地川西地区上侏罗统蓬莱镇组储层为例. 天然气工业, 2016, 36 (12): 18- 25.
虎法 , 小鲁 , 艳春 , 等. 水源识别技术在涩北气田气井出水中的应用. 天然气工业, 2009, 29 (7): 76- 78.
龙德 , 才能 , 爱林 , 等. 中国致密油气发展特征与方向. 石油勘探与开发, 2019, 46 (6): 1015- 1026.
, 顺利 , 胜军 , 等. 广安地区须家河组气藏气水分布特征. 天然气工业, 2009, 29 (6): 23- 26.
王超. 2017. 川西蓬莱镇组致密砂岩储层孔隙结构评价及气水微观赋存机理研究[硕士论文]. 成都: 西南石油大学.
, 永尚 , 杉钰 , 等. 沁水盆地寿阳区块煤层气井产水差异性原因分析及有利区预测. 天然气工业, 2016, 36 (8): 52- 59.
, 胜来 , , 等. 缝洞型碳酸盐岩气藏多类型储层内水的赋存特征可视化实验. 石油学报, 2018, 39 (6): 686- 696.
瑞飞 , 明强 . 特低渗透砂岩储层可动流体赋存特征及影响因素. 石油学报, 2008, 29 (4): 558- 561. 558-561, 566
晓梅 , 靖舟 , 新社 . 苏里格地区致密砂岩地层水赋存状态和产出机理探讨. 石油实验地质, 2012, 34 (4): 400- 405.
跃祥 , , , 等. 基于核磁共振测井的致密气储层孔隙结构评价与分类. 地球物理学进展, 2023, 38 (2): 759- 767.
丽影 , 洪志 , 礼友 , 等. 利用可动水饱和度预测川中地区须家河组气井产水特征. 天然气工业, 2012, 32 (11): 47- 50.
建彪 , 瑞飞 , , 等. 鄂尔多斯盆地致密砂岩气藏微观孔喉球棍模型表征方法. 地球物理学进展, 2023, 38 (1): 337- 347.
, 志红 , 云飞 , 等. 致密砂岩储层孔隙度预测方法研究. 地球物理学进展, 2024, 39 (4): 1597- 1606.
解永刚, 石华强, 李小玲, 等. 2025. 基于核磁共振技术的不同类型致密砂岩储层压裂液微观伤害特征研究. 地球物理学进展, 1-13. http://kns.cnki.net/kcms/detail/11.2982.p.20240905.1738.042.html.
熊哲, 高航, 刘俊, 等. 2018. 苏里格西区致密砂岩气藏微观渗流产水机理研究. //2018中国油气开发技术大会. 北京: 中国石油学会, 306-315.
文平 , 朝东 , , 等. 柴达木盆地第四系疏松砂岩天然气储层可动水预测方法研究. 天然气地球科学, 2012, 23 (5): 952- 955.
满平 , , 彩珍 . 气藏储层含束缚水的应力敏感性分析. 天然气地球科学, 2004, 15 (4): 391- 394.
, 端阳 , 运晓 , 等. 多层疏松砂岩气藏水平井出水机理及防控对策——以柴达木盆地台南气田为例. 天然气工业, 2019, 39 (5): 85- 92.
礼友 , 树生 , , 等. 可动水饱和度作为低渗砂岩气藏储层评价参数的论证. 石油天然气学报, 2011, 33 (1): 57- 59.
礼友 , 树生 , 洪志 , 等. 致密砂岩气藏产水机理与开发对策. 天然气工业, 2015, 35 (2): 41- 46.
静波 , 庆伟 , 晓庆 , 等. 基于核磁实验的饱和度计算新方法及其应用. 地球物理学进展, 2023, 38 (3): 1228- 1237.
, 超谟 , 占松 , 等. 致密气储层岩心束缚水饱和度实验对比. 天然气地球科学, 2016, 27 (2): 352- 358.
海涛 , . 苏里格气田储层含水特征与测井识别方法. 吉林大学学报(地球科学版), 2010, 40 (2): 447- 454.
张杰, 高树生, 叶礼友, 等. 2019a. 储层可动水饱和度与气藏产水特征关系研究. //第31届全国天然气学术年会(2019)论文集(02气藏开发). 合肥, 70-80.
, 熙喆 , 树生 , 等. 致密砂岩气藏产水机理及其对渗流能力的影响. 天然气地球科学, 2019b, 30 (10): 1519- 1530.
张杰. 2021. 致密砂岩气藏孔隙水产出机理与主控因素研究[博士论文]. 廊坊: 中国科学院大学(中国科学院渗流流体力学研究所).
丽囡 , 笑萍 , 春森 , 等. 气井产出水的来源及地下相态的判断. 大庆石油学院学报, 1993, 17 (2): 107- 111.
, 兴刚 , , 等. 苏东气井产水原因分析及控水生产研究. 特种油气藏, 2016, 23 (5): 103- 105.
培平 . 用渗流机理物理模拟技术研究气田出水机理——以涩北气田为例. 天然气工业, 2009, 29 (7): 64- 67.
学庆 , , , 等. 水膜理论在致密低渗透砂岩储层改造中的应用. 矿物岩石, 1998, 18 (S1): 161- 163.
, , 创新 , 等. 东海西湖凹陷致密砂岩气藏高含水特征及产水机理探讨. 天然气勘探与开发, 2018, 41 (3): 75- 80.
俊杰 , 颖川 , 东斌 , 等. 鄂尔多斯盆地大牛地低渗气田产水规律. 石油与天然气地质, 2011, 32 (6): 946- 951.
雨晴 , 佳佳 , 广智 , 等. 致密砂岩储层岩石物理建模及"甜点"预测. 地球物理学进展, 2025, 40 (1): 255- 265.
华银 , , 玉金 , 等. 多孔介质中气水渗流的微观机理研究. 石油实验地质, 2004, 26 (6): 571- 573.
华银 , , 来志 , 等. 致密气藏孔隙水赋存状态与流动性实验. 石油学报, 2016, 37 (2): 230- 236.
才能 , 敏捷 , , 等. 碳中和目标下中国天然气工业进展、挑战及对策. 石油勘探与开发, 2024, 51 (2): 418- 435.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(4211 KB)

Accesses

Citation

Detail

Sections
Recommended

/