Intelligent joint inversion of Rayleigh wave phase velocity and polarizability dispersion curves

MingHao ZHAO, LiMin HUANG, ZhiHou ZHANG, ShiNing HAUNG, YanXia WU, YongZheng SHU, XinYuan CHEN, JiaNing HAUNG, GuangMao ZHAO, JieGuang ZHOU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2187-2200.

PDF(8524 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8524 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2187-2200. DOI: 10.6038/pg2025II0185

Intelligent joint inversion of Rayleigh wave phase velocity and polarizability dispersion curves

Author information +
History +

Abstract

Rayleigh wave inversion is a key method for obtaining the shear wave velocity structure. However, the current traditional inversion method has problems such as relying on the initial model, easy to fall into the local extreme value, and difficult to calculate the Hessian matrix. At the same time, the difference between the Rayleigh wave phase velocity and polarization rate dispersion curves on the sensitivity of the velocity structure parameters limits the accuracy of a single inversion result. Due to the certain characteristics of orderliness and ergodicity of shear wave velocities in various strata, the Markov decision algorithm is thus adopted to simulate all underground structural situations, and the velocity structure is expressed precisely through the adaptive layering method proposed in this paper. On this basis, finally, the dispersion curves of phase velocities and polarizability derived from the forward modeling of the stratum structure are fused in characteristic segments to construct a sample data set; Considering that the dispersion curves of phase velocity and polarizability corresponding to the formation velocity structure possess certain temporal characteristics, a convolutional neural network concatenated with long short-term memory recurrent neural network was built as the backbone network model for joint inversion; After the completion of the model construction, comprehensive and systematic supervised training was carried out on this network. Eventually, a model that can meet the actual requirements and has a relatively good inversion effect was obtained.The model test shows that the relative errors of the joint inversion results are all reduced compared with the single inversion results; the addition of noise in some sample data not only effectively improves the model inversion accuracy but alsoincreases the generalization performance of the model. In practical applications, the method proposed in this paper is applied to the measured data of the 2008 Wenchuan earthquake in Hongkou Shenxigou, Dujiangyan City, Sichuan Province, and good inversion results are obtained, which provide scientific evidence for the localization effect of "co-seismic deformation".

Key words

Rayleigh wave / Dispersion curves / Joint inversion / Deep learning

Cite this article

Download Citations
MingHao ZHAO , LiMin HUANG , ZhiHou ZHANG , et al . Intelligent joint inversion of Rayleigh wave phase velocity and polarizability dispersion curves[J]. Progress in Geophysics. 2025, 40(5): 2187-2200 https://doi.org/10.6038/pg2025II0185

References

Beaty K S , Schmitt D R , Sacchi M . Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure. Geophysical Journal International, 2002, 151 (2): 622- 631.
Berg E M , Lin F C , Allam A , et al. Shear velocity model of Alaska via joint inversion of Rayleigh wave Ellipticity, phase velocities, and receiver functions across the Alaska transportable array. Journal of Geophysical Research: Solid Earth, 2020, 125 (2): e2019JB018582
Cai W , Song X H , Yuan S C , et al. Inversion of Rayleigh wave dispersion curves based on firefly and bat algorithms. Chinese Journal of Geophysics (in Chinese), 2018, 61 (6): 2409- 2420.
Chen D , Xu G Y . Prospecting metal mine goafs by Rayleigh wave method. West-China Exploration Engineering (in Chinese), 2006, (1): 69- 71.
Chong J J , Ni S D , Zhao L . Joint inversion of crustal structure with the Rayleigh wave phase velocity dispersion and the ZH ratio. Pure and Applied Geophysics, 2015, 172 (10): 2585- 2600.
Constable S C , Parker R L , Constable C G . Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 1987, 52 (3): 289- 300.
Du Y N , Xu P F , Ling S Q , et al. Determining the soil-bedrock interface and fracture-zone scope in the central urban area of the Jinan city, China, by using microtremor signals. Journal of Geophysics and Engineering, 2019, 16 (4): 680- 689.
Elman J L . Finding structure in time. Cognitive Science, 1990, 14 (2): 179- 211.
Goodfellow I , Bengio Y , Courville A . Deep Learning. Cambridge, MA: MIT Press, 2016
Hinton G , Deng L , Yu D , et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 2012, 29 (6): 82- 97.
Hochreiter S , Schmidhuber J . Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780.
Ikeda T , Tsuji T , Takanashi M , et al. Temporal variation of the shallow subsurface at the Aquistore CO2 storage site associated with environmental influences using a continuous and controlled seismic source. Journal of Geophysical Research: Solid Earth, 2017, 122 (4): 2859- 2872.
Jin K H , Mccann M T , Froustey E , et al. Deep convolutional neural network for inverse problems in imaging. IEEE Transactions on Image Processing, 2017, 26 (9): 4509- 4522.
Krizhevsky A , Sutskever I , Hinton G E . ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
Li J F , Liu Y H , Yin C C , et al. Fast imaging of time-domain airborne EM data using deep learning technology. Geophysics, 2020a, 85 (5): E163- E170.
Li S C , Liu B , Ren Y X , et al. Deep-learning inversion of seismic data. IEEE Transactions on Geoscience and Remote Sensing, 2020b, 58 (3): 2135- 2149.
Lin F C , Schmandt B , Tsai V C . Joint inversion of Rayleigh wave phase velocity and ellipticity using USArray: Constraining velocity and density structure in the upper crust. Geophysical Research Letters, 2012, 39 (12): L12303
Lin F C , Tsai V C , Schmandt B . 3-D crustal structure of the western United States: application of Rayleigh-wave ellipticity extracted from noise cross-correlations. Geophysical Journal International, 2014, 198 (2): 656- 670.
Liu B , Guo Q , Li S C , et al. Deep learning inversion of electrical resistivity data. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58 (8): 5715- 5728.
Liu B X , Xian P H . Application of shallow seismic and ground penetrating radar to subway engineering investigation. Chinese Journal of Engineering Geophysics (in Chinese), 2019, 16 (6): 792- 798.
Liu X R , Yang Z P . Engineering Geology (in Chinese). Wuhan: Wuhan University Press, 2018 194- 196.
Lu L Y , Wang C H , Zhang B X . Inversion of multimode Rayleigh waves in the presence of a low-velocity layer: numerical and laboratory study. Geophysical Journal International, 2007a, 168 (3): 1235- 1246.
Lu L Y , Wang C H , Zhang B X . Inversion of multimode Rayleigh waves in the presence of a low-velocity layer: numerical and laboratory study. Geophysical Journal International, 2007b, 168 (3): 1235- 1246.
Maraschini M , Foti S . A Monte Carlo multimodal inversion of surface waves. Geophysical Journal International, 2010, 182 (3): 1557- 1566.
Martínez M D , Lana X , Badal J , et al. Simulated annealing in 3-D seismic modelling and elastic structure of the Mediterranean basin. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999, 24 (3): 253- 260.
Martínez M D , Lana X , Olarte J , et al. Inversion of Rayleigh wave phase and group velocities by simulated annealing. Physics of the Earth and Planetary Interiors, 2000, 122 (1 -2): 3- 17.
Mi B B , Xia J H , Bradford J H , et al. Estimating near-surface shear-wave-velocity structures via multichannel analysis of Rayleigh and love waves: An experiment at the Boise Hydrogeophysical research site. Surveys in Geophysics, 2020, 41 (2): 323- 341.
Mi B B , Xia J H . Estimation of near-surface shear-wave velocity by joint inversion of dispersion and HVSR curves of Rayleigh waves from multicomponent active-seismic records. IOP Conference Series: Earth and Environmental Science, 2021, 660: 012056
Miller R D , Xia J H , Park C B , et al. Multichannel analysis of surface waves to map bedrock. The Leading Edge, 1999, 18 (12): 1392- 1396.
Puzyrev V . Deep learning electromagnetic inversion with convolutional neural networks. Geophysical Journal International, 2019, 218 (2): 817- 832.
Puzyrev V , Egorov A , Pirogova A , et al. Deep neural networks for 1D impedance inversion. ASEG Extended Abstracts, 2019, 2019 (1): 1- 4.
Saifuddin , Yamanaka H , Chimoto K . Variability of shallow soil amplification from surface-wave inversion using the Markov-chain Monte Carlo method. Soil Dynamics and Earthquake Engineering, 2018, 107: 141- 151.
Schwab F , Knopoff L . Surface-wave dispersion computations. Bulletin of the Seismological Society of America, 1970, 60 (2): 321- 344.
Shi Y L , Jin W . Genetic algorithms inversion of lithospheric structure from surface wave dispersion. Acta Geophysica Sinica (in Chinese), 1995, 38 (2): 189- 198.
Song X H , Xiao B X , Huang R R , et al. The inversion of dispersion curves using self-adaptively iterative damping least square method by combining equal thinner layers with weighting matrix. Geophysical and Geochemical Exploration (in Chinese), 2003, 27 (3): 212- 216.
Song X H , Gu H M , Zhang X Q , et al. Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh-wave dispersion curves. Computers and Geosciences, 2008, 34 (6): 611- 624.
Song X H , Tang L , X C , et al. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves. Journal of Applied Geophysics, 2012, 84: 1- 13.
Tang Y X , Xiang X M , Sun J , et al. A generic shear wave velocity profiling model for use in ground motion simulation. Geosciences, 2020, 10 (10): 408
Tang Z , Mai P M , Julià J , et al. Shear velocity structure beneath Saudi Arabia from the joint inversion of P and S wave receiver functions, and Rayleigh wave group velocity dispersion data. Journal of Geophysical Research: Solid Earth, 2019, 124 (5): 4767- 4787.
Tanimoto T , Alvizuri C . Inversion of the HZ ratio of microseisms for S-wave velocity in the crust. Geophysical Journal International, 2006, 165 (1): 323- 335.
Tanimoto T , Rivera L . The ZH ratio method for long-period seismic data: sensitivity kernels and observational techniques. Geophysical Journal International, 2008, 172 (1): 187- 198.
Tokeshi K , Harutoonian P , Leo C J , et al. Use of surface waves for geotechnical engineering applications in Western Sydney. Advances in Geosciences, 2013, 35: 37- 44.
Xia J H , Miller R D , Park C B . Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 1999, 64 (3): 691- 700.
Xin W L . Application research of comprehensive geophysical prospecting technology in collapse geological disaster control. West-China Exploration Engineering (in Chinese), 2023, 35 (10): 17- 20.
Yamanaka H , Ishida H . Application of genetic algorithms to an inversion of surface-wave dispersion data. Bulletin of the Seismological Society of America, 1996, 86 (2): 436- 444.
Yano T , Tanimoto T , Rivera L . The ZH ratio method for long-period seismic data: inversion for S-wave velocity structure. Geophysical Journal International, 2009, 179 (1): 413- 424.
Yu D K , Song X H , Jiang D W , et al. Improvement of Artificial Bee Colony and its application in Rayleigh wave inversion. Chinese Journal of Geophysics (in Chinese), 2018, 61 (4): 1482- 1495.
Yuan Y , Yao H J , Qin Y . Joint inversion of Rayleigh wave vertical-horizontal amplitude ratios and dispersion based on the neighborhood algorithm and its application. Chinese Journal of Geophysics (in Chinese), 2016, 59 (3): 959- 971.
Zhang J , Li J Y , Chen X H , et al. Robust deep learning seismic inversion with a priori initial model constraint. Geophysical Journal International, 2021, 225 (3): 2001- 2019.
Zhang L , Liu Z P . A study of the elliptic polarization characteristics of fundamental mode Rayleigh wave based on numerical simulation. Chinese Journal of Geophysics (in Chinese), 2013, 56 (5): 1686- 1695.
Zhang Z H , Liao X L , Cao Y Y , et al. Joint gravity and gravity gradient inversion based on deep learning. Chinese Journal of Geophysics (in Chinese), 2021a, 64 (4): 1435- 1452.
Zhang Z H , Lu R Q , Liao X L , et al. Inversion of magnetic anomaly and magnetic gradient anomaly based on fully convolution network. Progress in Geophysics (in Chinese), 2021b, 36 (1): 325- 337.
Zhang Z H , Shi Z Y , Ma N , et al. Deep learning inversion of Rayleigh dispersion curves. Chinese Journal of Geophysics (in Chinese), 2022, 65 (6): 2244- 2259.
Zhang Z H , Liu W X , Shi Z Y , et al. Deep learning reduction to the pole method constrained by initial model for low latitude magnetic anomalies. Chinese Journal of Geophysics (in Chinese), 2023, 66 (1): 412- 429.
, 先海 , 士川 , 等. 基于萤火虫和蝙蝠群智能算法的瑞雷波频散曲线反演. 地球物理学报, 2018, 61 (6): 2409- 2420.
, 国元 . 瑞雷波法检测金属矿山采空区. 西部探矿工程, 2006, (1): 69- 71.
百祥 , 鹏辉 . 浅层地震及地质雷达在地铁工程勘察中的应用. 工程地球物理学报, 2019, 16 (6): 792- 798.
新荣 , 忠平 . 工程地质. 武汉: 武汉大学出版社, 2018 194- 196.
耀霖 , . 面波频散反演地球内部构造的遗传算法. 地球物理学报, 1995, 38 (2): 189- 198.
先海 , 柏勋 , 荣荣 , 等. 用等厚薄层权重自适应迭代阻尼最小二乘法反演瑞雷波频散曲线. 物探与化探, 2003, 27 (3): 212- 216.
文林 . 综合物探技术在崩塌地质灾害治理中的应用研究. 西部探矿工程, 2023, 35 (10): 17- 20.
东凯 , 先海 , 东威 , 等. 改进蜂群算法及其在面波频散曲线反演中的应用. 地球物理学报, 2018, 61 (4): 1482- 1495.
, 华建 , . 基于邻域算法的瑞利面波垂直-水平振幅比及频散曲线联合反演及应用. 地球物理学报, 2016, 59 (3): 959- 971.
, 争平 . 水平层状介质中基阶瑞利面波椭圆极化特征数值分析与研究. 地球物理学报, 2013, 56 (5): 1686- 1695.
志厚 , 晓龙 , 云勇 , 等. 基于深度学习的重力异常与重力梯度异常联合反演. 地球物理学报, 2021a, 64 (4): 1435- 1452.
志厚 , 润琪 , 晓龙 , 等. 基于全卷积神经网络的磁异常及磁梯度异常反演. 地球物理学进展, 2021b, 36 (1): 325- 337.
志厚 , 泽玉 , , 等. 瑞雷波频散曲线的深度学习反演方法. 地球物理学报, 2022, 65 (6): 2244- 2259.
志厚 , 慰心 , 泽玉 , 等. 低纬度磁异常的初始模型约束全卷积神经网络化极方法. 地球物理学报, 2023, 66 (1): 412- 429.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(8524 KB)

Accesses

Citation

Detail

Sections
Recommended

/