Research on the application of 3-D DC resistivity exploration in water areas based on parallel electrical method

HuaZe YANG, XingHai CHEN, GuanQun ZHOU, XiaoPing WU, YaFei WANG, XiKai LIANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 817-826.

PDF(10115 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10115 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 817-826. DOI: 10.6038/pg2025II0190

Research on the application of 3-D DC resistivity exploration in water areas based on parallel electrical method

Author information +
History +

Abstract

Due to the special nature of the aquatic environment, the placement of electrodes for electrical exploration is difficult and the data collection efficiency is low. Currently, 2D electrical exploration is mainly used in aquatic areas, making it difficult to accurately locate the target bodies. 3D DC exploration is rarely reported. Based on the fast acquisition technology of parallel electrical exploration and the joint 3D inversion method of multiple survey lines, this article conducted a 3D DC electrical exploration of the original bottom boundary of a quarry in aquatic conditions. A numerical model similar to the actual geological conditions of the survey area was constructed, and the feasibility of 3D DC electrical exploration was verified through numerical simulation. During actual exploration, electrodes were arranged on the water surface, and a pseudo 3D observation system data composed of multiple 2D survey lines was used for 3D inversion. By obtaining multiple XZ resistivity profiles, the depth data of the quarry bottom in a 30 m×5 m grid was obtained, forming contour maps of the quarry bottom boundary. The accuracy of the results was verified through drilling calibration, satellite photo comparison, actual pumping exploration, and other means.

Key words

Parallel electrical method / Three-dimensional exploration / DC resistivity method / Water area exploration

Cite this article

Download Citations
HuaZe YANG , XingHai CHEN , GuanQun ZHOU , et al . Research on the application of 3-D DC resistivity exploration in water areas based on parallel electrical method[J]. Progress in Geophysics. 2025, 40(2): 817-826 https://doi.org/10.6038/pg2025II0190

References

Cao W G. 2021. Study on 3D marine DC resistivity modeling and inversion using unstructured finite element method (in Chinese). Hefei: University of Science and Technology of China, doi: 10.27517/d.cnki.gzkju.2021.002140.
Cao Y , Liu S D , Tang R Q , et al. Research on the derivation of ABM array for parallel acquisition of AM array technique. Geophysical and Geochemical Exploration, 2016, 40 (6): 1157- 1165.
Chen X J , Guo Z W , Liu C M , et al. Groundwater detection using the Pseudo-3D resistivity method: A history of case studies. Appl. Sci., 2022, 12 (13): 6788
Dai Q W , Xiao B , Feng D S . 3-D inversion of the high density resistivity method based on multi profiles 2-D exploration data and its application. Geotechnical Investigation & Surveying, 2011, 39 (4): 84- 89.
Doro K O , Emmanuel E D , Adebayo M B , et al. Time-lapse electrical resistivity tomography imaging of buried human remains in simulated mass and individual graves. Front. Environ. Sci., 2022, 10: 882496
Eze S U , Abolarin M O , Ozegin K O , et al. Numerical modeling of 2-D and 3-D geoelectrical resistivity data for engineering site investigation and groundwater flow direction study in a sedimentary terrain. Modeling Earth Systems and Environment, 2022, 8 (3): 3737- 3755.
Goto T N , Kasaya T , MacHiyama H , et al. A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea. Exploration Geophysics, 2008, 39 (1): 52- 59.
Han D M , Cao G L , Cai D Z , et al. Using electrical resistivity tomography method to investigate fresh groundwater lenses on Dong Island, China. Resources Science, 2024, 46 (3): 635- 646.
Huang G M , Li S P , Tao Y , et al. A case study of water prospecting by electrical method in clastic rock area of Guangxi. Geophysical and Geochemical Exploration, 2019, 43 (1): 77- 83.
Huang J G , Ruan B Y , Bao G S . DC resistivity numerical modeling under water. Computing Techniques for Geophysical and Geochemical Exploration, 2004, 26 (2): 136- 140.
Liu S D , Liu J , Qi J , et al. Applied technologies and new advances of parallel electrical method in mining geophysics. Journal of China Coal Society, 2019, 44 (8): 2336- 2345.
Lü B H. 2020. The technical research on the system of freshwater multi-channel electrical prospecting (in Chinese). Beijing: China University of Geosciences (Beijing), doi: 10.27493/d.cnki.gzdzy.2020.001872.
Ma J X. 2021. Research on key technologies of integrated acoustic detection of seabed topography geomorphology and subbottom profile (in Chinese). Harbin: Harbin Engineering University, doi: 10.27060/d.cnki.ghbcu.2021.001626.
Neyamadpour A . Field test to compare 3D imaging capabilities of three arrays in a site with high resistivity contrast regions. Stud. Geophys. Geod., 2011, 55 (4): 755- 769.
Ni L , Chen D H , Xu H W , et al. Electrical exploration on water region used in the geophysical prospecting cross the river and lake. Progress in Geophysics, 2012, 27 (6): 2710- 2715.
Rucker D F , Noonan G E , Greenwood W J . Electrical resistivity in support of geological mapping along the Panama Canal. Engineering Geology, 2011, 117 (1-2): 121- 133.
Simyrdanis K , Papadopoulos N , Cantoro G . Shallow off-shore archaeological prospection with 3-D electrical resistivity tomography: The case of Olous (Modern Elounda), Greece. Remote Sensing, 2016, 8 (11): 897
Tassis G A , Tsourlos P I , Rønning J S . Detection and characterization of fracture zones in bedrock in marine environment: Possibilities and limitations. Near Surface Geophysics, 2020, 18 (1): 91- 103.
Tian P X , Chen W J , Lin Q H , et al. Application of geophysical exploration technologies for channel at sea. Geophysical and Geochemical Exploration, 2023, 47 (6): 1450- 1455.
Wang Z M . Application of the shallow layer profiling method in engineering geological investigation on water area. Site Investigation Science and Technology, 1994, (2): 62- 64.
Yang X J, Lagmanson M. 2006. Comparison of 2D and 3D electrical resistivity imaging methods. //Symposium on the Application of Geophysics to Engineering and Environmental Problems 2006. Washington, DC: Environmental & Engineering Geophysical Society, 585-594.
Yu J H. 2014. Applied research on the precise detection technology of accumulation bodies in shallow waters (in Chinese). Hefei: Hefei University of Technology.
Zhang Y S , Li B , Zhang J L . The application of the transient electromagnetic method to the waters geological investigation. Geophysical and Geochemical Exploration, 2016, 40 (1): 160- 162.
Zhang Z H , Long W , Li X W . The application of seismic reflection method to the exploration of bridge location and tunnel location in water area of Pearl River Estuary. Geophysical and Geochemical Exploration, 2013, 37 (4): 749- 755.
Zhou R Z , Luo R C . Application of Innomar shallow seismic profiler in water engineering investigation. Site Investigation Science and Technology, 2016, (S1): 90- 93.
Zhu D B , Yang Y C , Tian Z H . Underway electrical rapid prospecting technology. Progress in Geophysics, 2014, 29 (3): 1377- 1383.
Zhu J , Kang H M , Du Y , et al. Study on application of high density resistivity method in engineering geological investigation. Site Investigation Science and Technology, 2011, (2): 60- 61. 60-61, 64
曹文广. 2021. 海洋直流电阻率三维非结构有限元正反演研究[硕士论文]. 合肥: 中国科学技术大学, doi: 10.27517/d.cnki.gzkju.2021.002140.
, 盛东 , 润秋 , 等. 电法并行采集AM排列推导ABM排列技术研究. 物探与化探, 2016, 40 (6): 1157- 1165.
前伟 , , 德山 . 高密度电阻率法多剖面二维勘探数据的三维反演及应用. 工程勘察, 2011, 39 (4): 84- 89.
冬梅 , 国亮 , 砥柱 , 等. 基于高密度电测法的西沙东岛地下淡水透镜体识别. 资源科学, 2024, 46 (3): 635- 646.
国民 , 世平 , , 等. 广西碎屑岩地区电法找水实例. 物探与化探, 2019, 43 (1): 77- 83.
俊革 , 百尧 , 光淑 . 水下直流电阻率法数值模拟. 物探化探计算技术, 2004, 26 (2): 136- 140.
盛东 , , , 等. 矿井并行电法技术体系与新进展. 煤炭学报, 2019, 44 (8): 2336- 2345.
吕宝辉. 2020. 淡水水域多通道电法勘探技术研究. 北京: 中国地质大学(北京), doi: 10.27493/d.cnki.gzdzy.2020.001872.
马晶鑫. 2021. 海底地形地貌与浅地层剖面一体化声学探测关键技术研究[硕士论文]. 哈尔滨: 哈尔滨工程大学, doi: 10.27060/d.cnki.ghbcu.2021.001626.
, 大红 , 华文 , 等. 水域电法在江、湖穿越工程中应用. 地球物理学进展, 2012, 27 (6): 2710- 2715.
培先 , 伟坚 , 启辉 , 等. 海上航道地球物理勘查技术的应用. 物探与化探, 2023, 47 (6): 1450- 1455.
自民 . 浅层剖面法在水域工程地质勘察中的应用. 勘察科学技术, 1994, (2): 62- 64.
余金煌. 2014. 浅水域堆积体精准探测技术应用研究[博士论文]. 合肥: 合肥工业大学.
银松 , , 家刘 . 瞬变电磁法在水域地质勘察中的应用. 物探与化探, 2016, 40 (1): 160- 162.
哲辉 , , 学文 . 反射波法在珠江口海域桥址及隧道勘察的应用. 物探与化探, 2013, 37 (4): 749- 755.
润洲 , 日春 . Innomar浅层剖面仪在水域工程勘察中的应用. 勘察科学技术, 2016, (S1): 90- 93.
德兵 , 益成 , 忠涵 . 走航式电法快速探测技术. 地球物理学进展, 2014, 29 (3): 1377- 1383.
, 会明 , , 等. 水域高密度电法在工程地质勘察中的应用研究. 勘察科学技术, 2011, (2): 60- 61. 60-61, 64

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(10115 KB)

Accesses

Citation

Detail

Sections
Recommended

/