Rock magnetic results of the Lower Carboniferous Chengqianggou Formation in the Qaidam block

PengFei WANG, YaNan ZHOU, Xin CHENG, Teng WANG, BiTian WEI, RuiYang CHAI, FeiFan LIU, Zhao LIU, DongWei LIU, HanNing WU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 472-483.

PDF(11823 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11823 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 472-483. DOI: 10.6038/pg2025II0193

Rock magnetic results of the Lower Carboniferous Chengqianggou Formation in the Qaidam block

Author information +
History +

Abstract

The Qaidam Block is located in the northeastern part of the Qinghai-Xizang Plateau, situated between the Qilian Block and the Songpan-Ganzi Block. The restoration of its paleogeography is very important for understanding the formation of the Qinghai-Xizang Plateau and the northern of China. However, the paleogeographic location of Qaidam block during Carboniferous period is still controversial. Paleomagnetism as one of the most effective methods for reconstructing the positions of ancient continental blocks, has played an irreplaceable role in the exploration of the Early Carboniferous paleogeographical location of Qaidam block. The results of rock magnetism experiments can provide foundational data for conducting systematic paleomagnetic studies, and their significance cannot be ignored. This paper selects sandstone samples from the Lower Carboniferous Chengqiangggou Formation in the Qaidam Block to conduct detailed rock magnetic experiments, petrographic experiments, as well as demagnetization experiments, to identify the type and characteristics of magnetic minerals in the Chengqianggou Formation sandstone. The results show that the main magnetic minerals in the sample from Chengqianggou Formation sandstone are Single-Domain (SD) and Multi- Domain (MD) hematite and magnetite. The demagnetization curves of some samples exhibit two-component behaviors, and the stable remanence direction of the high-temperature section can be effectively isolated. Combined with the results of petrographic experiments, it is concluded that the main magnetic minerals in the sandstone samples of the Chengqianggou Formation have the capability to record a stable primary remanence during its sedimentary period. Capable of conducting further research on tectonomagnetism.

Key words

Qaidam block / Rock magnetism / Demagnetization experiments / Chengqianggou Formation / Sandstone

Cite this article

Download Citations
PengFei WANG , YaNan ZHOU , Xin CHENG , et al . Rock magnetic results of the Lower Carboniferous Chengqianggou Formation in the Qaidam block[J]. Progress in Geophysics. 2025, 40(2): 472-483 https://doi.org/10.6038/pg2025II0193

References

Ao H , Deng C L . Review in the identification of magnetic minerals. Progress in Geophysics, 2007, 22 (2): 432- 442.
Ba J , Zhang L , He C , et al. Zircon and monazite ages constraints on devonian magmatism and granulite-facies metamorphism in the Southern Qaidam Block: Implications for evolution of proto-and paleo-tethys in East Asia. Journal of Earth Science, 2018, 29 (5): 1132- 1150.
Bai Q H , Yan Y G , Huang B C , et al. Preliminary rock magnetic study of Permo-Triassic limestones from the Shan state block of Myanmar, SE Asia. Progress in Geophysics, 2015, 30 (3): 1177- 1184.
Burton-Johnson A , Riley T R , Harrison R J , et al. Does tectonic deformation control episodic continental arc magmatism? Evidence from granitic magnetic fabrics (AMS). Gondwana Research, 2022, 112: 1- 23.
Cao Y , Sun Z M , Li H B , et al. New Early and Late Carboniferous paleomagnetic results from the Qaidam Block, NW China: Implications for the paleogeography of Central Asia. Tectonophysics, 2017, 717: 242- 252.
Chen Y , Gilder S , Halim N , et al. New paleomagnetic constraints on central Asian kinematics: Displacement along the Altyn Tagh fault and rotation of the Qaidam Basin. Tectonics, 2002, 21 (5): 1042
Chen Z Q , Shi G R , Zhan L P . Early Carboniferous athyridid brachiopods from the Qaidam Basin, northwest China. Journal of Paleontology, 2003, 77 (5): 844- 862.
Deng C , Zhu R , Jackson M J , et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: A pedogenesis indicator. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26 (11-12): 873- 878.
Deng X H , Zhou Y , Wang T , et al. Rock magnetic results from the Early Ordovician Limestone Rocks in the Northern Qaidam Block, Tibetan Plateau. Minerals, 2023, 13 (1): 65
Dong Y P , He D F , Sun S S , et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 2018, 186: 231- 261.
Dunlop D J . Magnetic mineralogy of unheated and heated red sediments by coercivity spectrum analysis. Geophysical Journal International, 1972, 27 (1): 37- 55.
Guyodo Y , Mostrom A , Penn R L , et al. From Nanodots to Nanorods: Oriented aggregation and magnetic evolution of nanocrystalline goethite. Geophysical Research Letters, 2003, 30 (10): 1512
Hrouda F . A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophysical Journal International, 1994, 118 (3): 604- 612.
Liu Q S , Deng C L , Yu Y , et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 2005, 161 (1): 102- 112.
Liu Q S , Roberts A P , Larrasoaña J C , et al. Environmental magnetism: Principles and applications. Reviews of Geophysics, 2012, 50 (4): RG4002
Lowrie W . Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 1990, 17 (2): 159- 162.
Luan S L . Sedimentary characteristics of the carboniferous in Chengqianggou-Shihuigou area of Qaidam Basin. Journal of Shengli College China University of Petroleum, 2018, 32 (1): 16- 18.
Luo Z L , Yong Z Q , Liu S G , et al. Discussion on reconstruction of Tarim-Yangtze paleocontinent. Earth Science Frontiers, 2006, 13 (6): 131- 138.
Ma L C , Jiang W , Xiao Z X , et al. Discussion on the depositional timing of the Zhabusagaxiu formation in the eastern Qaidam Basin, China. Journal of Geomechanics, 2020, 26 (6): 961- 972.
Metcalfe I . Permian tectonic framework and palaeogeography of Se Asia. Journal of Asian Earth Sciences, 2002, 20 (6): 551- 566.
Metcalfe I . Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Research, 2006, 9 (1-2): 24- 46.
Morin F J . Magnetic susceptibility of αFe2O3 and αFe2O3 with added Titanium. Phys. Rev., 1950, 78 (6): 819- 820.
Muxworthy A R , Dunlop D J . First-order reversal curve (FORC) diagrams for pseudo-single-domain magnetites at high temperature. Earth and Planetary Science Letters, 2002, 203 (1): 369- 382.
Ouyang T P , Li M K , Guo Y , et al. Magnetic difference between deep and surface soil within an agricultural area in Southern China: Implications for magnetic mineral transformation during pedogenic process under subtropical climate. Earth and Space Science, 2020, 7 (10): e2019EA001070
Pan G T , Li X Z , Wang L Q , et al. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions. Geological Bulletin of China, 2002, 21 (11): 701- 707.
Pan G T . Collision Tectonic and Effection on Qinghai-Tibet Plateau. Guangzhou: Guangdong Science & Technology Press, 2013
Pike C R , Roberts A P , Verosub K L . Characterizing interactions in fine magnetic particle systems using first order reversal curves. Journal of Applied Physics, 1999, 85 (9): 6660- 6667.
Pike C R , Roberts A P , Dekkers M J , et al. An investigation of multi-domain hysteresis mechanisms using FORC diagrams. Physics of the Earth and Planetary Interiors, 2001, 126 (1-2): 11- 25.
Qin H F , Liu Q S , Pan Y X . The first-order reversal curve (FORC) diagram: Theory and case study. Chinese Journal of Geophysics, 2008, 51 (3): 743- 751.
Qinghai Bureau of Geology and Mineral Resources . Regional Geology of Qinghai Province. Beijing: Geological Publishing House, 1991
Roberts A P , Cui Y L , Verosub K L . Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. Journal of Geophysical Research: Solid Earth, 1995, 100 (B9): 17909- 17924.
Roberts A P , Pike C R , Verosub K L . First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research: Solid Earth, 2000, 105 (B12): 28461- 28475.
Rochette P , Fillion G , Mattéi J L , et al. Magnetic transition at 30-34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks. Earth and Planetary Science Letters, 1990, 98 (3-4): 319- 328.
Shao R Q , Yang X F , Zhou Y N , et al. Study on the magnetic properties of the basalt in Keping area, Early Permian Tarim Large Igneous Province. Progress in Geophysics, 2019, 34 (6): 2180- 2187.
Shi G R , Chen Z Q , Lee S , et al. Early Carboniferous spiriferoid brachiopods from the Qaidam Basin, Northwest China: Taxonomy, biostratigraphy and biogeography. Palaeoworld, 2016, 25 (4): 581- 599.
Shi H , Wang B , Hu J J , et al. Early Carboniferous tectono-sedimentary pattern in the western North Margin of Qaidam Basin: evidence from the rare earth elements of the Lower Carboniferous Huaitoutala Formation. Acta Sedimentologica Sinica, 2024, 1- 20.
Shi X D. 1979. Discovery of the Tournaisian in the northeastern margin of the Qaidam Basin at the Amneke Mountain—A discussion on the subdivision of the lower Carboniferous in the Olongbuluke. //Geological Collection of the Qinghai-Tibet Plateau (in Chinese). Lasha, 193-212.
Sun C R . Stratigraphy(Lithostratic) of Qinghai Province. Wuhan: China University of Geosciences Press, 1997
Sun J P , Dong Y P , Ma L C , et al. Devonian to Triassic tectonic evolution and basin transition in the East Kunlun-Qaidam area, northern Tibetan Plateau: Constraints from stratigraphy and detrital zircon U-Pb geochronology. GSA Bulletin, 2022a, 134 (7-8): 1967- 1993.
Sun L , Ji J L , Li B S , et al. Paleomagnetic constraints on Paleogene-Neogene rotation and paleo-stress in the northern Qaidam Basin. Science China Earth Sciences, 2022b, 65 (12): 2385- 2404.
Sun Z , Yang Z , Pei J , et al. New Early Cretaceous paleomagnetic data from volcanic and red beds of the eastern Qaidam Block and its implications for tectonics of Central Asia. Earth and Planetary Science Letters, 2006, 243 (1-2): 268- 281.
Sun Z M , Yang Z Y , Pei J L , et al. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth and Planetary Science Letters, 2005, 237 (3-4): 635- 646.
Tauxe L , Mullender T A T , Pick T . Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. Journal of Geophysical Research: Solid Earth, 1996, 101 (B1): 571- 583.
Teng X , Zhang J X , Mao X H , et al. Qaidam block situated in the interior of Rodinia and Gondwana: New magmatic and metamorphic constraints. Precambrian Research, 2022, 381: 106866
Torsvik T H , Van Der Voo R , Preeden U , et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 2012, 114 (3-4): 325- 368.
Vanvelzen A J , Dekkers M J . The incorporation of thermal methods in mineral magnetism of loess-paleosol sequences: a brief overview. Chinese Science Bulletin, 1999, 44 (S1): 53- 63.
Verwey E J W . Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature, 1939, 144 (3642): 327- 328.
Wang B , Zhang G W , Li S Z , et al. Early Carboniferous paleomagnetic results from the northeastern margin of the Qinghai-Tibetan plateau and their implications. Gondwana Research, 2016, 36: 57- 64.
Wang B , Huang B C , Yang Z Y , et al. Palaeomagnetic results from Early Mesozoic strata in the Qaidam Basin and their implications for the formation of the Northern China Domain. Geophysical Journal International, 2024, 236 (3): 1621- 1635.
Wang Q M , Coward M P . The Chaidam Basin (NW China): Formation and hydrocarbon potential. Journal of Petroleum Geology, 1990, 13 (1): 93- 112.
Wang T , Zhou Y N , He W D , et al. Provenance change in Carboniferous-early Permian sedimentary successions in the North Qaidam tectonic belt, northern Tibetan Plateau: Implications for the Kunlun oceanic plate subduction process. Journal of Asian Earth Sciences, 2022, 240: 105434
Wang Z J. 1987. Lower Carboniferous stratigraphy and coral fossil sequence in the Amunike Mountain of the North Qaidam Basin. //Bulletin of the Institute of Geology Chinese Academy of Geological Sciences (in Chinese), 51-114.
Wu H N , Liu C Y , Zhang X H , et al. Exploring the tectonic evolution of the Qaidam Block with paleomagnetic data. Science in China (Series D), 1997, 27 (1): 9- 14.
Xu W , Sun Z M , Pei J L , et al. New Late Permian paleomagnetic results from Qaidam block and tectonic implications. Acta Petrologica Sinica, 2011, 27 (11): 3479- 3486.
Xu W , Liu F L , Dong Y S . Cambrian to Triassic geodynamic evolution of central Qiangtang, Tibet: Reply. Earth-Science Reviews, 2020, 209: 103323
Xu Z Q , Zhao Z B , Peng M , et al. Review of "orogenic plateau". Acta Petrologica Sinica, 2016, 32 (12): 3557- 3571.
Yang H X , Yu H M , Li P W . Palaeomagnetic study of chaidam plate and its evolution. Journal of Changchun University of Earth Sciences, 1992, (4): 420- 426.
Yin A , Harrison T M . Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 2000, 28: 211- 280.
Yu X J , Fu S T , Guan S W , et al. Paleomagnetism of Eocene and Miocene sediments from the Qaidam basin: Implication for no integral rotation since the Eocene and a rigid Qaidam block. Geochemistry, Geophysics, Geosystems, 2014, 15 (6): 2109- 2127.
Zhang C , Bader T , Zhang L F , et al. The multi-stage tectonic evolution of the Xitieshan terrane, North Qaidam orogen, western China: From Grenville-age orogeny to early-Paleozoic ultrahigh-pressure metamorphism. Gondwana Research, 2017, 41: 290- 300.
Zhang C Y , Zhao Y , Liu J , et al. Provenance analysis of the Maoniushan Formation in the North Qaidam basin and its tectonic significance. Acta Geologica Sinica, 2019, 93 (3): 712- 723.
Zhang J , Mattinson C G , Meng F , et al. Polyphase tectonothermal history recorded in granulitized gneisses from the north Qaidam HP/UHP metamorphic terrane, western China: Evidence from zircon U-Pb geochronology. Geological Society of America Bulletin, 2008, 120 (5-6): 732- 749.
Zhang W L , Appel E , Fang X M , et al. New paleomagnetic constraints on syntectonic growth strata in the western Qaidam Basin, NE Tibetan Plateau. Tectonophysics, 2020, 780: 228401
Zhao G C , Wang Y J , Huang B C , et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 2018, 186: 262- 286.
Zhou G D . The definition, age and distribution of the Chengqianggou Formation in Qaidam Basin. Northwestern Geology, 1986, (2): 1- 6.
Zhu G K . Palaeomagnetism: Foundations, Principles, Methods, Achievements and Applications. Beijing: Science Press, 2005
, 成龙 . 磁性矿物的磁学鉴别方法回顾. 地球物理学进展, 2007, 22 (2): 432- 442.
千惠 , 永刚 , 宝春 , 等. 缅甸掸邦地块二叠纪-三叠纪灰岩的岩石磁学初步研究结果. 地球物理学进展, 2015, 30 (3): 1177- 1184.
守亮 . 柴达木盆地城墙沟-石灰沟地区石炭系沉积特征. 中国石油大学胜利学院学报, 2018, 32 (1): 16- 18.
志立 , 自权 , 树根 , 等. 试论"塔里木-扬子古大陆"再造. 地学前缘, 2006, 13 (6): 131- 138.
立成 , , 宙轩 , 等. 柴达木盆地东部扎布萨尕秀组的时代归属讨论. 地质力学学报, 2020, 26 (6): 961- 972.
桂棠 , 兴振 , 立全 , 等. 青藏高原及邻区大地构造单元初步划分. 地质通报, 2002, 21 (11): 701- 707.
桂棠 . 青藏高原碰撞构造与效应. 广州: 广东科技出版社, 2013
华峰 , 青松 , 永信 . 一阶反转曲线(FORC)图的原理及应用实例. 地球物理学报, 2008, 51 (3): 743- 751.
青海省地质矿产局 . 青海省区域地质志. 北京: 地质出版社, 1991
瑞琦 , 兴峰 , 亚楠 , 等. 塔里木大火成岩省柯坪地区早二叠世玄武岩岩石磁学性质研究. 地球物理学进展, 2019, 34 (6): 2180- 2187.
, , 俊杰 , 等. 柴北缘西段早石炭世构造—沉积格局——来自下石炭统怀头他拉组稀土元素的证据. 沉积学报, 2024, 1- 20.
施希德. 1979. 柴达木东北缘阿木尼克山杜内阶的发现——兼对欧龙布鲁克下石炭统划分的讨论. //青藏高原地质文集. 拉萨, 193-212.
崇仁 . 青海省岩石地层. 武汉: 中国地质大学出版社, 1997
王增吉. 1987. 柴达木盆地北缘阿木尼克山地区早石炭世地层及珊瑚化石序列. //中国地质科学院地质研究所文集, 51-114.
汉宁 , 池阳 , 小会 , 等. 用古地磁资料探讨柴达木地块构造演化. 中国科学(D辑), 1997, 27 (1): 9- 14.
, 知明 , 军令 , 等. 青藏高原北部柴达木块体晚二叠世古地磁结果及其构造意义. 岩石学报, 2011, 27 (11): 3479- 3486.
志琴 , 中宝 , , 等. 论"造山的高原". 岩石学报, 2016, 32 (12): 3557- 3571.
惠心 , 惠民 , 鹏武 . 柴达木地块古地磁研究及其演化. 长春地质学院学报, 1992, (4): 420- 426.
春宇 , , , 等. 柴达木盆地北缘牦牛山组物源分析及其构造意义. 地质学报, 2019, 93 (3): 712- 723.
赵效泳, 范晓东, 陈灼源, 等. 1978. 德令哈旧址幅J-47-26 1/20万区域地质调查报告. 青海省区综大队(原第一区测队).
光第 . 柴达木盆地城墙沟组的定义、时代及其分布. 西北地质, 1986, (2): 1- 6.
岗崑 . 古地磁学: 基础、原理、方法、成果与应用. 北京: 科学出版社, 2005

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(11823 KB)

Accesses

Citation

Detail

Sections
Recommended

/