Research on the principle and abnormal characteristics of advanced detection of overlying cavities in shield tunnels using small-coil transient electromagnetic method

QingHua LIANG, EnJie LIU, ChunYuan WANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1672-1678.

PDF(4169 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4169 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1672-1678. DOI: 10.6038/pg2025II0199

Research on the principle and abnormal characteristics of advanced detection of overlying cavities in shield tunnels using small-coil transient electromagnetic method

Author information +
History +

Abstract

It is currently challenging to accurately detect overburden cavities ahead of shield tunneling in subway tunnels. Given the shallow depth of subway tunnels, this study investigates the principle of super-ahead detection of overburden cavities in shield tunnels using small coil transient electromagnetic detection technology, as well as the transient electromagnetic anomaly characteristics. Numerical simulation studies show that when the transient electromagnetic coil is located directly above the cavity, an area resembling a "butterfly" is generated in the electric field response. The closer the distance to the cavity, the greater the electric field response influenced by the cavity. Due to the rapid attenuation of the transient electric field in the cavity, differences exist in the apparent resistivity responses, allowing for the identification of underground cavities. Through engineering practice, the transient electromagnetic anomaly characteristics of dry cavities mainly manifest as isolated, discontinuous, and easily closed-loop electromagnetic curves, with high resistivity anomalies in apparent resistivity data. Wet cavities exhibit transient electromagnetic anomaly characteristics with some continuity in the electromagnetic curves, often showing convex or concave features, and low resistivity anomalies in apparent resistivity data. Ground transient electromagnetic methods can effectively identify shallow underground cavities.

Key words

Transient electromagnetic / Cavity / Shield tunnel / Ahead detection / Anomaly characteristics

Cite this article

Download Citations
QingHua LIANG , EnJie LIU , ChunYuan WANG. Research on the principle and abnormal characteristics of advanced detection of overlying cavities in shield tunnels using small-coil transient electromagnetic method[J]. Progress in Geophysics. 2025, 40(4): 1672-1678 https://doi.org/10.6038/pg2025II0199

References

Gao X G . Research on detecting collapse holes in quicksand layer above inclined shaft by NanoTEM. China Coal, 2016, 42 (8): 25- 29.
Guo N N , Chang Y J , Liu Y F , et al. Application of transient electromagnetic method to prospecting of underground shelter. Chinese Journal of Engineering Geophysics, 2011, 8 (6): 705- 708.
He C X , Wu H Y , Liu A Y . Application of comprehensive geophysical methods in the detection of underground cavities in deep overburden layers. Gansu Water Resources and Hydropower Technology, 2023, 59 (2): 42- 46.
Li C , Zhu J , Chen J J , et al. Transient electromagnetic response characteristics of an underground high resistivity cave and practical detection effect. Coal Geology and Exploration, 2012, 40 (6): 79- 81.
Li H , Han Z Q , Chen P . Application of transient electromagnetic method in groundwater prediction of highway tunnel. Tunnel Construction, 2019, 39 (S1): 355- 360.
Li H Y , Fu J D , Wang Q S , et al. Application of transient electromagnetic method in goaf detection. Resource Information and Engineering, 2023, 38 (2): 33- 36.
Li S C , Liu Y J , Peng R H , et al. Research on the influencing factors of transient electromagnetic method on the detection of hidden Karst. Progress in Geophysics, 2022, 37 (1): 397- 412.
Li X J , Wang Y , Tang M E . The application of the transient electromagnetic method (TEM) to engineering geophysical exploration. Chinese Journal of Engineering Geophysics, 2014, 11 (3): 355- 360.
Liang Q H. 2012. The technology and application of mine full-space transient electromagnetic detection by small coil [Ph. D. thesis] (in Chinese). Changsha: Central South University.
Liang Y F , Shen M L , Song G , et al. Application of transient electromagnetic method in advanced detection of geohazards in shallow buried highway tunnel in saturated completely weathered granite soils. Soil Engineering and Foundation, 2021, 35 (6): 781- 786.
Liu W . Prospection for airborne TEM systems to prospecting shelter caves in the subsurface. Journal of Ordnance Equipment Engineering, 2017, 38 (6): 169- 175.
Sun Y S. 2023. Research on noise reduction and inversion methods for urban drag transient electromagnetic data [Ph. D. thesis] (in Chinese). Changchun: Jilin University, doi: 10.27162/d.cnki.gjlin.2023.007010.
Wu X G , Li T B , Zhang Z , et al. Improvement of the traditional transient electromagnetic method and its application to advanced geological forecast of tunnel. Hydrogeology and Engineering Geology, 2021, 48 (1): 163- 170.
Xu J L. 2023. Research on rapid detection method of urban hidden geological hazards based on transient electromagnetic method [Ph. D. thesis] (in Chinese). Xi'an: Xi'an University of Technology, doi: 10.27398/dcnki.gxalu.2023.001547.
Xu W J , Shen J G , Shen Y J , et al. Study on transient electromagnetic detection method of foundation pit curtain leakage. Progress in Geophysics, 2023, 38 (2): 900- 911.
Xue G Q , Chang J H , Lei K X , et al. Review on three-dimensional simulations of transient electromagnetic field. Journal of Earth Sciences and Environment, 2021, 43 (3): 559- 567.
Yu J C . Transient Electromagnetic Exploration in Mines. Xuzhou: China University of Mining and Technology Press, 2007
Zhang X J . Application of transient electromagnetic method in advance geological prediction of a diversion tunnel. Communications Science and Technology Heilongjiang, 2023, 46 (10): 102- 105.
Zhang Z Q . Application of transient electromagnetic method in geological risk prediction and assessment of tunnel engineering. Chinese Journal of Engineering Geophysics, 2021, 18 (5): 671- 677.
Zheng H B , Zhao X M . Application of transient electromagnetic method based on COMSOL simulation in advanced geological prediction of tunnels. Highway, 2023, 68 (6): 469- 474.
晓耕 . 斜井上部流砂层塌陷空洞纳米瞬变电磁法探测. 中国煤炭, 2016, 42 (8): 25- 29.
宁宁 , 彦君 , 一峰 , 等. 瞬变电磁法在城区建筑基坑中的防空洞探测. 工程地球物理学报, 2011, 8 (6): 705- 708.
春旭 , 泓瑶 , 艾妍 . 综合物探法在深厚覆盖层地下空腔探测中的应用. 甘肃水利水电技术, 2023, 59 (2): 42- 46.
, , 剑杰 , 等. 高阻空洞的瞬变电磁响应特征及其探测效果. 煤田地质与勘探, 2012, 40 (6): 79- 81.
, 自强 , . 瞬变电磁法在公路隧道地下水预报中的应用. 隧道建设(中英文), 2019, 39 (S1): 355- 360.
海洋 , 巨德 , 庆胜 , 等. 瞬变电磁法探测技术在采空区探测中的应用. 资源信息与工程, 2023, 38 (2): 33- 36.
世聪 , 亚军 , 荣华 , 等. 瞬变电磁法对隐伏岩溶探测的影响因素研究. 地球物理学进展, 2022, 37 (1): 397- 412.
新均 , , 沐恩 . 瞬变电磁法及其在工程地球物理勘探中的应用. 工程地球物理学报, 2014, 11 (3): 355- 360.
梁庆华. 2012. 矿井全空间小线圈瞬变电磁探测技术及应用研究[博士论文]. 长沙: 中南大学.
艳峰 , 孟龙 , , 等. 瞬变电磁法在浅埋富水全强风化花岗岩公路隧道中的超前探测. 土工基础, 2021, 35 (6): 781- 786.
. 航空瞬变电磁法探测地下隐蔽洞体的前景浅析. 兵器装备工程学报, 2017, 38 (6): 169- 175.
孙一书. 2023. 城市拖曳瞬变电磁数据降噪与反演方法研究[博士论文]. 长春: 吉林大学, doi: 10.27162/d.cnki.gjlin.2023.007010.
. 瞬变电磁法在高速公路隧道超前地质预报中的应用. 交通世界, 2023, (25): 144- 146. 144-146+158
小刚 , 天斌 , , 等. 传统瞬变电磁法的改进及其在隧道超前地质预报中的应用. 水文地质工程地质, 2021, 48 (1): 163- 170.
徐佳林. 2023. 基于瞬变电磁法的城市隐伏地质灾害快速探测方法研究[博士论文]. 西安: 西安理工大学, doi: 10.27398/d.cnki.gxalu.2023.001547.
维骏 , 建国 , 永进 , 等. 基坑帷幕渗漏瞬变电磁检测方法研究. 地球物理学进展, 2023, 38 (2): 900- 911.
国强 , 江浩 , 康信 , 等. 瞬变电磁法三维模拟计算研究进展. 地球科学与环境学报, 2021, 43 (3): 559- 567.
景邨 . 矿井瞬变电磁法勘探. 徐州: 中国矿业大学出版社, 2007
旭杰 . 瞬变电磁法在引水隧洞超前地质预报中的应用. 黑龙江交通科技, 2023, 46 (10): 102- 105.
子强 . 瞬变电磁法在隧道工程地质风险预测与评估中的应用. 工程地球物理学报, 2021, 18 (5): 671- 677.
洪斌 , 学敏 . 基于COMSOL模拟的瞬变电磁法在隧道超前地质预报中的应用. 公路, 2023, 68 (6): 469- 474.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(4169 KB)

Accesses

Citation

Detail

Sections
Recommended

/