WFEM denoising method and application via improved dung beetle optimizer and LSTM

Xian ZHANG, MaoLin DENG, DiQuan LI, YeCheng LIU, YanFang HU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1577-1587.

PDF(6537 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6537 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1577-1587. DOI: 10.6038/pg2025II0201

WFEM denoising method and application via improved dung beetle optimizer and LSTM

Author information +
History +

Abstract

In order to solve the problem of low data quality and unsatisfactory detection effect of Wide Field Electromagnetic Method (WFEM) caused by noise, this paper proposes a WFEM denoising method and application based on improved dung beetle optimization (Improved DBO, IDBO) and Long Short Term Memory (LSTM) network. Firstly, the Spatial Pyramid Matching (SPM) chaotic mapping, variable spiral strategy, Levy flight mechanism, adaptive t-distribution variance perturbation strategy are used to improve the IDBO algorithm. Then, the mean square error is used as the fitness function of the IDBO algorithm to optimize the hyperparameters of the LSTM algorithm. Finally, the IDBO-LSTM method is applied to the WFEM data de-noising processing. The experimental results show that the search ability of IDBO is significantly better than that of other intelligent optimization algorithms, and the LSTM algorithm optimized by IDBO has a significantly higher denoising accuracy than the probabilistic neural network(PNN) and the LSTM algorithms. The data quality of the WFEM data processed by the IDBO-LSTM method is significantly improved, and the electric field curve shape is more stable. The proposed method can provide technical support for the interpretation of electromagnetic method inversion.

Key words

Wide Field Electromagnetic Method(WFEM) / Improved dung beetle optimizer / Long Short Term Memory(LSTM) / Denoising

Cite this article

Download Citations
Xian ZHANG , MaoLin DENG , DiQuan LI , et al . WFEM denoising method and application via improved dung beetle optimizer and LSTM[J]. Progress in Geophysics. 2025, 40(4): 1577-1587 https://doi.org/10.6038/pg2025II0201

References

Amiri M H , Mehrabi Hashjin N , Montazeri M , et al. Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm. Scientific Reports, 2024, 14 (1): 5032
Anitha J , Pandian S I A , Agens S A . An efficient multilevel color image thresholding based on modified whale optimization algorithm. Expert Systems with Applications, 2021, 178: 115003
Brockmann D , Hufnagel L , Geisel T . The scaling laws of human travel. Nature, 2006, 439 (7075): 462- 465.
Chen C J , Jiang Q Y , Mo D , et al. De-noising pseudo-random electromagnetic data using gray judgment criterion and rational function filtering. Chinese Journal of Geophysics, 2019, 62 (10): 3854- 3865.
Chen Z , Sun L X . Short-term electrical load forecasting based on deep learning LSTM networks. Electronic Technology, 2018, 47 (1): 39- 41.
Faramarzi A , Heidarinejad M , Mirjalili S , et al. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 2020, 152: 113377
Gao Y S , Zhang J H , Wang Y L , et al. Love Evolution Algorithm: a stimulus-value-role theory-inspired evolutionary algorithm for global optimization. The Journal of Supercomputing, 2024, 80 (9): 12346- 12407.
Guo Q M , Zhang P , Wang Y Y , et al. Review of intelligent algorithms for autonomous path planning of UAVs. Aero Weaponry, 2023, 30 (3): 29- 40.
Hamad R K , Rashid T A . GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond. Evolving Systems, 2024, 15 (4): 1249- 1274.
He J S , Tong T G , Liu J X . Mathematical analysis and realization of an sequence pseudo-random multi-frequencies signal. Journal of Central South University (Science and Technology), 2009, 40 (6): 1666- 1671.
He J S . Wide field electromagnetic sounding methods. Journal of Central South University (Science and Technology), 2010, 41 (3): 1065- 1072.
Heidari A A , Pahlavani P . An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Applied Soft Computing, 2017, 60: 115- 134.
Hochreiter S , Schmidhuber J . Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780.
Hu Y F , Liu Z J , Li D Q , et al. Noise separation of CSEM data based on improved clustering method. Chinese Journal of Geophysics, 2024, 67 (1): 394- 408.
Li G , He Z S , Deng J Z , et al. Robust CSEM data processing by unsupervised machine learning. Journal of Applied Geophysics, 2021a, 186: 104262
Li G , He Z S , Tang J T , et al. Dictionary learning and shift-invariant sparse coding denoising for controlled-source electromagnetic data combined with complementary ensemble empirical mode decomposition. Geophysics, 2021b, 86 (3): E185- E198.
Li G , Ding D , Shi F S , et al. Intelligent recognition of controlled-source electromagnetic data by support vector machine. Journal of Jilin University (Earth Science Edition), 2022, 52 (3): 725- 736.
Li G , Wu S L , Cai H Z , et al. IncepTCN: A new deep temporal convolutional network combined with dictionary learning for strong cultural noise elimination of controlled-source electromagnetic data. Geophysics, 2023, 88 (4): E107- E122.
Li J , Guo L H , Li Y , et al. Enhancing whale optimization algorithm with chaotic theory for permutation flow shop scheduling problem. International Journal of Computational Intelligence Systems, 2021, 14 (1): 651- 675.
Mirjalili S , Lewis A . The whale optimization algorithm. Advances in Engineering Software, 2016, 95: 51- 67.
Mirjalili S , Mirjalili S M , Hatamlou A . Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 2016, 27 (2): 495- 513.
Mo D , Jiang Q Y , Li D Q , et al. Controlled-source electromagnetic data processing based on gray system theory and robust estimation. Applied Geophysics, 2017, 14 (4): 570- 580.
Peraza-Vázquez P , Peña-Delgado A F , Echavarría-Castillo G , et al. A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies. Mathematical Problems in Engineering, 2021, 2021: 9107547
Rhee I , Shin M , Hong S , et al. On the levy-walk nature of human mobility. IEEE/ACM Transactions on Networking, 2011, 19 (3): 630- 643.
Sun X D , Liu H N , Zhang Y . A sand cat swarm optimization algorithm with adaptive t-distribution and Lévy flight mechanism. Journal of University of Science and Technology Liaoning, 2023, 46 (4): 308- 314.
Wu T , Li D Q , Suo G Y , et al. The application of the generalized S-transform in the data processing of the wide-field electromagnetic method. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41 (3): 379- 385.
Xue J K , Shen B . Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. The Journal of Supercomputing, 2023, 79 (7): 7305- 7336.
Yang Y , He J S , Li D Q . A noise evaluation method for CSEM in the frequency domain based on wavelet transform and analytic envelope. Chinese Journal of Geophysics, 2018, 61 (1): 344- 357.
Yang Y , Li D Q , Tong T G , et al. Denoising controlled-source electromagnetic data using least-squares inversion. Geophysics, 2018, 83 (4): E229- E244.
Yang Y , Zhang H , Zhu Y Z , et al. Denoising land-based controlled-source electromagnetic data based on a same-site noise reference channel. Geophysical Journal International, 2023a, 235 (3): 2285- 2304.
Yang Y , Zhou C Y , Zhang H , et al. Denoising CSEM data using least-squares method based on mixed basis of Fourier series and Legendre polynomials. IEEE Transactions on Geoscience and Remote Sensing, 2023b, 61: 5921812
Zhang B M , Jiang Q Y , Mo D , et al. A novel method for handling gross errors in electromagnetic prospecting data. Chinese Journal of Geophysics, 2015, 58 (6): 2087- 2102.
Zhang X , Li D Q , Li J , et al. CSEM pseudo-random signal processing method based on feature extraction and clustering identification. Oil Geophysical Prospecting, 2022, 57 (4): 973- 981.
Zhang X , Li D Q , Li J , et al. Grey wolf optimization-based variational mode decomposition for magnetotelluric data combined with detrended fluctuation analysis. Acta Geophysica, 2022a, 70 (1): 111- 120.
Zhang X , Li D Q , Li J , et al. Signal-noise identification for wide field electromagnetic method data using multi-domain features and IGWO-SVM. Fractal and Fractional, 2022b, 6 (2): 80
Zhang X , Li D Q , Liu B , et al. Intelligent processing of electromagnetic data using detrended and identification. Machine Learning: Science and Technology, 2023, 4 (4): 045041
Zhang X , Li D Q , Hu Y F , et al. WFEM signal-noise separation method based on improved inherent time-scale decomposition and probabilistic neural network. Progress in Geophysics, 2024, 39 (1): 241- 252.
超健 , 奇云 , , 等. 基于灰色判别准则和有理函数滤波的伪随机电磁数据去噪. 地球物理学报, 2019, 62 (10): 3854- 3865.
, 龙祥 . 基于深度学习LSTM网络的短期电力负荷预测方法. 电子技术, 2018, 47 (1): 39- 41.
启敏 , , 应洋 , 等. 无人机自主航迹规划智能算法综述. 航空兵器, 2023, 30 (3): 29- 40.
继善 , 铁钢 , 建新 . an序列伪随机多频信号数学分析及实现. 中南大学学报(自然科学版), 2009, 40 (6): 1666- 1671.
继善 . 广域电磁测深法研究. 中南大学学报(自然科学版), 2010, 41 (3): 1065- 1072.
艳芳 , 子杰 , 帝铨 , 等. 基于优化聚类的人工源电磁法数据信噪分离方法. 地球物理学报, 2024, 67 (1): 394- 408.
广 , , 福升 , 等. 基于支持向量机的可控源电磁数据智能识别方法. 吉林大学学报(地球科学版), 2022, 52 (3): 725- 736.
孝东 , 海宁 , . 一种自适应t分布和Lévy飞行机制的沙猫群优化算法. 辽宁科技大学学报, 2023, 46 (4): 308- 314.
, 帝铨 , 光运 , 等. 广义S变换时频分析在广域电磁法数据处理中的应用. 物探化探计算技术, 2019, 41 (3): 379- 385.
, 继善 , 帝铨 . 在频率域基于小波变换和Hilbert解析包络的CSEM噪声评价. 地球物理学报, 2018, 61 (1): 344- 357.
必明 , 奇云 , , 等. 电磁勘探数据粗大误差处理的一种新方法. 地球物理学报, 2015, 58 (6): 2087- 2102.
, 帝铨 , , 等. 基于特征提取与聚类识别的人工源电磁伪随机信号处理方法. 石油地球物理勘探, 2022, 57 (4): 973- 981.
, 帝铨 , 艳芳 , 等. 基于IITD和PNN的广域电磁法数据信噪分离方法. 地球物理学进展, 2024, 39 (1): 241- 252.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(6537 KB)

Accesses

Citation

Detail

Sections
Recommended

/