Research progress of deep learning in seismic fault interpretation

Xi DI, Yang LIU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1688-1716.

PDF(18601 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(18601 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1688-1716. DOI: 10.6038/pg2025II0204

Research progress of deep learning in seismic fault interpretation

Author information +
History +

Abstract

Faults, as one of the main geological structures, are crucial for analyzing subsurface structures and determining oil and gas enrichment areas. Traditional methods face challenges in the efficiency of seismic data feature extraction and the accuracy of fault identification. This article first outlines the background of seismic fault identification and the limitations of traditional methods, and then explores the application of deep learning methods in this field. In deep learning, fault identification is regarded as an image processing task, usually trained in a supervised learning manner. Data, model, and loss function are the three core elements of supervised deep learning. Data is the foundation for training deep learning models, and the quality, diversity, and representativeness of data are crucial for the training and generalization ability of the model; the model can establish a nonlinear expression of the relationship between input and output, used to learn patterns and rules in the data; the loss function is used to quantify the difference between the model's predictions and the true labels, and a good loss function can guide the model towards more accurate optimization continuously. This paper first introduces the training dataset and methods of data fusion and difference optimization, then discusses the effectiveness of different deep learning models such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Transformer models in seismic fault identification, and finally analyzes the impact of different loss functions. This paper summarizes the current performance, advantages, and challenges of deep learning methods in seismic fault identification and provides an outlook on possible future research directions.

Key words

Seismic fault interpretation / Deep learning model / Dataset / Loss function

Cite this article

Download Citations
Xi DI , Yang LIU. Research progress of deep learning in seismic fault interpretation[J]. Progress in Geophysics. 2025, 40(4): 1688-1716 https://doi.org/10.6038/pg2025II0204

References

Abraham N, Khan N M. 2019. A novel focal tversky loss function with improved attention U-Net for lesion segmentation. //2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). Venice, Italy: IEEE, 683-687.
AlBinHassan N M, Marfurt K. 2003. Fault detection using Hough transforms. //SEG Technical Program Expanded Abstracts 2003. SEG, 1719-1721.
Al-Dossary S, Marfurt K J. 2003. Improved 3-D seismic edge-detection filter applied to Vinton Dome Louisiana. //SEG Technical Program Expanded Abstracts. SEG, 2370-2372.
Al-Dossary S , Marfurt K J . 3D volumetric multispectral estimates of reflector curvature and rotation. Geophysics, 2006, 71 (5): P41- P51.
An Y , Guo J L , Ye Q , et al. Deep convolutional neural network for automatic fault recognition from 3D seismic datasets. Computers & Geosciences, 2021a, 153: 104776
An Y , Guo J L , Ye Q , et al. A gigabyte interpreted seismic dataset for automatic fault recognition. Data in Brief, 2021b, 37: 107219
An Y , Du H W , Ma S T , et al. Current state and future directions for deep learning based automatic seismic fault interpretation: A systematic review. Earth-Science Reviews, 2023, 243: 104509
Bahorich M , Farmer S . 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. The Leading Edge, 1995, 14 (10): 1053- 1058.
Bi Z F , Wu X M , Geng Z C , et al. Deep relative geologic time: A deep learning method for simultaneously interpreting 3-D seismic horizons and faults. Journal of Geophysical Research: Solid Earth, 2021, 126 (9): e2021JB021882
Chang D K , Yong X S , Wang Y H , et al. Seismic fault interpretation based on deep convolutional neural networks. Oil Geophysical Prospecting, 2021, 56 (1): 1- 8.
Chang D K , Zhang G Z , Yong X S , et al. Deep learning using synthetic seismic data by Fourier domain adaptation in seismic structure interpretation. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8030705
Chen G , Liu Y . Research progress of automatic fault recognition based on artificial intelligence. Progress in Geophysics, 2021, 36 (1): 119- 131.
Chopra S , Marfurt K J . Emerging and future trends in seismic attributes. The Leading Edge, 2008, 27 (3): 298- 318.
Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 2016. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. //19th International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016. Athens, Greece: Springer International Publishing, 424-432.
Cunha A , Pochet A , Lopes H , et al. Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data. Computers & Geosciences, 2020, 135: 104344
Di H B , Gao D L . Gray-level transformation and Canny edge detection for 3D seismic discontinuity enhancement. Computers & Geosciences, 2014, 72: 192- 200.
Di H B, Shafiq M A, AlRegib G. 2017. Seismic-fault detection based on multiattribute support vector machine analysis. //SEG Technical Program Expanded Abstracts. SEG, 2039-2044.
Di H B, Shafiq M, AlRegib G. 2018a. Patch-level MLP classification for improved fault detection. //SEG Technical Program Expanded Abstracts 2018. SEG, 2211-2215.
Di H B, Wang Z, AlRegib G. 2018b. Why using CNN for seismic interpretation? An investigation. //SEG Technical Program Expanded Abstracts. SEG, 2216-2220.
Di H B, Wang Z, AlRegib G. 2018c. Seismic fault detection from post-stack amplitude by convolutional neural networks. //80th EAGE Conference and Exhibition 2018. European Association of Geoscientists & Engineers, 2018: 1-5.
Di H B , Gao D L , AlRegib G . Developing a seismic texture analysis neural network for machine-aided seismic pattern recognition and classification. Geophysical Journal International, 2019a, 218 (2): 1262- 1275.
Di H B , Shafiq M A , Wang Z , et al. Improving seismic fault detection by super-attribute-based classification. Interpretation, 2019b, 7 (3): SE251- SE267.
Dou Y M , Li K W , Zhu J B , et al. Attention-based 3-D seismic fault segmentation training by a few 2-D slice labels. IEEE Transactions on Geoscience and Remote Sensing, 2022a, 60: 5906715
Dou Y M , Li K W , Zhu J B , et al. MD loss: Efficient training of 3-D seismic fault segmentation network under sparse labels by weakening anomaly annotation. IEEE Transactions on Geoscience and Remote Sensing, 2022b, 60: 5919014
Dou Y M , Li K W , Dong M H , et al. FaultSSL: Seismic fault detection via semisupervised learning. Geophysics, 2024, 89 (3): M79- M91.
Dou Y M , Li K W . 3D seismic fault detection via contrastive-reconstruction representation learning. Expert Systems with Applications, 2024, 249: 123617
Du H W , An Y , Ye Q , et al. Disentangling noise patterns from seismic images: Noise reduction and style transfer. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4513214
Faleide T S , Braathen A , Lecomte I , et al. Impacts of seismic resolution on fault interpretation: Insights from seismic modelling. Tectonophysics, 2021, 816: 229008
Gao K , Huang L J , Zheng Y C . Fault detection on seismic structural images using a nested residual U-Net. IEEE Transactions on Geoscience and Remote Sensing, 2022a, 60: 4502215
Gao K , Huang L J , Zheng Y C , et al. Automatic fault detection on seismic images using a multiscale attention convolutional neural network. Geophysics, 2022b, 87 (1): N13- N29.
Gersztenkorn A , Marfurt K J . Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics, 1999, 64 (5): 1468- 1479.
Guillon S, Joncour F, Goutorbe P, et al. 2019. Reducing training dataset bias for automatic fault detection. //SEG Technical Program Expanded Abstracts. SEG, 2423-2427.
Guitton A, Wang H, Trainor-Guitton W. 2017. Statistical imaging of faults in 3D seismic volumes using a machine learning approach. //SEG Technical Program Expanded Abstracts 2017. SEG, 2045-2049.
Guitton A. 2018. 3D convolutional neural networks for fault interpretation. //80th EAGE Conference and Exhibition 2018. European Association of Geoscientists & Engineers, 2018: 1-5.
Guo B W, Li L, Luo Y. 2018. A new method for automatic seismic fault detection using convolutional neural network. //SEG Technical Program Expanded Abstracts. SEG, 1951-1955.
Guo L , Xiong R , Zhao J L , et al. Seismic fault identification based on multi-scale dense convolution and improved long short-term memory network. IEEE Access, 2023, 11: 124114- 124128.
Hale D . Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images. Geophysics, 2013, 78 (2): O33- O43.
Han T J , Ding R W , Zhao S , et al. Algorithm for intelligent recognition low-grade seismic faults using codec target edges. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5907912
He Y L , Wen X T , Wang J T , et al. Fault recognition based on 3D U-Net ++ L3 convolutional neural network. Progress in Geophysics, 2022, 37 (2): 607- 616.
Hu H T , Lian W X , Su R , et al. Stylization of a seismic image profile based on a convolutional neural network. Energies, 2022, 15 (16): 6039
Jing J K , Yan Z , Zhang Z , et al. Fault detection using a convolutional neural network trained with point-spread function-convolution-based samples. Geophysics, 2023, 88 (1): IM1- IM14.
Jun Park M, Jennings J, Clapp B, et al. 2022. Realistic synthetic data generation using neural style transfer: Application to automatic fault interpretation. //SEG Technical Program Expanded Abstracts. SEG, 1714-1718.
Kaur H , Zhang Q , Witte P , et al. Deep-learning-based 3D fault detection for carbon capture and storage. Geophysics, 2023, 88 (4): IM101- IM112.
Li B , Li Y E . Neural network-based CO2 Interpretation from 4D sleipner seismic images. Journal of Geophysical Research: Solid Earth, 2021, 126 (12): e2021JB022524
Li J T , Wu X M , Hu Z X . Deep learning for simultaneous seismic image super-resolution and denoising. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5901611
Li S R , Yang C C , Sun H , et al. Seismic fault detection using an encoder-decoder convolutional neural network with a small training set. Journal of Geophysics and Engineering, 2019, 16 (1): 175- 189.
Li T T , Hou S Y , Ma S Z , et al. Overview and research progress of fault identification method. Progress in Geophysics, 2018, 33 (4): 1507- 1514.
Li X , Li K W , Xu Z F , et al. Fault-Seg-Net: A method for seismic fault segmentation based on multi-scale feature fusion with imbalanced classification. Computers and Geotechnics, 2023, 158: 105412
Li X , Li K W . Fault-Attri-Attention: A method for fault identification based on seismic attributes attention. Neural Computing and Applications, 2024, 36 (7): 3645- 3661.
Lin L , Zhong Z , Cai Z X , et al. Automatic geologic fault identification from seismic data using 2.5D channel attention U-net. Geophysics, 2022, 87 (4): IM111- IM124.
Lin T Y, Goyal P, Girshick R, et al. 2017. Focal loss for dense object detection. //Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2999-3007.
Liu N H , Li S Z , Huang T , et al. Seismic fault Interpretation based on improved holistically-nested edge detection. Oil Geophysical Prospecting, 2022, 57 (3): 499- 509.
Lu F M , Meng R G , Zhang J H , et al. Research of complex fault recognition method based on UNet ++ network and transfer learning technique. Progress in Geophysics, 2022, 37 (3): 1100- 1111.
Ma X , Yao G , Zhang F , et al. 3-D seismic fault detection using recurrent convolutional neural networks with compound loss. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5909815
Ma X , Yao G , Zhang F , et al. Fault detection method based on pixel difference network. Chinese Journal of Geophysics, 2023, 66 (4): 1649- 1663.
Marfurt K J , Kirlin R L , Farmer S L , et al. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics, 1998, 63 (4): 1150- 1165.
Marfurt K J . Robust estimates of 3D reflector dip and azimuth. Geophysics, 2006, 71 (4): P29- P40.
Milletari F, Navab N, Ahmadi S A. 2016. V-net: Fully convolutional neural networks for volumetric medical image segmentation. //2016 Fourth International Conference on 3D Vision (3DV). Stanford, CA, USA: IEEE, 565-571.
Mustafa A , Rastegar R , Brown T , et al. Visual attention-guided learning with incomplete labels for seismic fault interpretation. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5908012
Pedersen S I, Randen T, Sonneland L, et al. 2002. Automatic fault extraction using artificial ants. //SEG Technical Program Expanded Abstracts 2002. SEG, 512-515.
Pham N, Dunlap D, Fomel S. 2021. Channel facies and faults multisegmentation in seismic volumes. //SEG Technical Program Expanded Abstracts. SEG, 1430-1434.
Pham N , Fomel S . Seismic data augmentation for automatic fault picking using deep learning. Geophysical Prospecting, 2024, 72 (1): 125- 141.
Pochet A , Diniz P H B , Lopes H , et al. Seismic fault detection using convolutional neural networks trained on synthetic poststacked amplitude maps. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (3): 352- 356.
Qi J , Machado G , Marfurt K . A workflow to skeletonize faults and stratigraphic features. Geophysics, 2017, 82 (4): O57- O70.
Qi J, Lyu B, Wu X M, et al. 2020. Comparing convolutional neural networking and image processing seismic fault detection methods. //SEG Technical Program Expanded Abstracts. SEG, 1111-1115.
Randen T, Monsen E, Signer C, et al. 2000. Three-dimensional texture attributes for seismic data analysis. //SEG Technical Program Expanded Abstracts 2000. SEG, 668-671.
Randen T, Pedersen S I, Sønneland L. 2001. Automatic extraction of fault surfaces from three-dimensional seismic data. //SEG Technical Program Expanded Abstracts 2001. SEG, 551-554.
Roberts A . Curvature attributes and their application to 3D interpreted horizons. First Break, 2001, 19 (2): 85- 100.
Salehi S S M, Erdogmus D, Gholipour A. 2017. Tversky loss function for image segmentation using 3D fully convolutional deep networks. //8th International Workshop on Machine Learning in Medical Imaging. Quebec City, QC, Canada: Springer International Publishing, 379-387.
Silva C C, Marcolino C S, Lima F D. 2005. Automatic fault extraction using ant tracking algorithm in the Marlim South Field, Campos Basin. //SEG Technical Program Expanded Abstracts 2005. SEG, 857-860.
Tang Z X , Wu B Y , Wu W H , et al. Fault detection via 2.5D Transformer U-Net with seismic data pre-processing. Remote Sensing, 2023, 15 (4): 1039
Van Bemmel P P, Pepper R E F. 2000. Seismic signal processing method and apparatus for generating a cube of variance values. U.S., 6151555.
Wang J , Zhang J H , Lu F M , et al. Research on fault detection method based on 3D deeply supervised network. Oil Geophysical Prospecting, 2021, 56 (5): 947- 957.
Wang S H , Si X , Cai Z X , et al. Structural augmentation in seismic data for fault prediction. Applied Sciences, 2022a, 12 (19): 9796
Wang Z R , Li B , Liu N H , et al. Distilling knowledge from an ensemble of convolutional neural networks for seismic fault detection. IEEE Geoscience and Remote Sensing Letters, 2022b, 19: 7500805
Wang Z W , You J C , Liu W , et al. Transformer assisted dual U-net for seismic fault detection. Frontiers in Earth Science, 2023, 11: 1047626
Wei X L , Zhang C X , Kim S W , et al. Seismic fault detection using convolutional neural networks with focal loss. Computers & Geosciences, 2022, 158: 104968
Wu W H , Yang Y , Wu B Y , et al. MTL-FaultNet: Seismic data reconstruction assisted multitask deep learning 3-D fault Interpretation. IEEE Transactions on Geoscience and Remote Sensing, 2023a, 61: 5914815
Wu X M, Shi Y Z, Fomel S, et al. 2018. Convolutional neural networks for fault Interpretation in seismic images. //SEG Technical Program Expanded Abstracts. SEG, 1946-1950.
Wu X M , Liang L M , Shi Y Z , et al. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 2019a, 84 (3): IM35- IM45.
Wu X M , Shi Y Z , Fomel S , et al. FaultNet3D: Predicting fault probabilities, strikes, and dips with a single convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 2019b, 57 (11): 9138- 9155.
Wu X M , Geng Z C , Shi Y Z , et al. Building realistic structure models to train convolutional neural networks for seismic structural Interpretation. Geophysics, 2020, 85 (4): WA27- WA39.
Wu X M , Ma J W , Si X , et al. Sensing prior constraints in deep neural networks for solving exploration geophysical problems. Proceedings of the National Academy of Sciences of the United States of America, 2023b, 120 (23): e2219573120
Xie S N, Tu Z W. 2015. Holistically-nested edge detection. //Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 1395-1403.
Xiong W , Ji X , Ma Y , et al. Seismic fault detection with convolutional neural network. Geophysics, 2018, 83 (5): O97- O103.
Yan Z , Zhang Z , Liu S Y . Improving performance of seismic fault detection by fine-tuning the convolutional neural network pre-trained with synthetic samples. Energies, 2021, 14 (12): 3650
Yang D, Cai Y F, Hu G M, et al. 2020. Seismic fault detection based on 3D Unet+ + model. //SEG International Exposition and Annual Meeting. Virtual: SEG, 1631-1635.
Yang J , Ding R W , Lin N T , et al. Research progress of intelligent identification of seismic faults based on deep learning. Progress in Geophysics, 2022, 37 (1): 298- 311.
Yang J R , Wu X M , Bi Z F , et al. A multi-task learning method for relative geologic time, horizons, and faults with prior information and transformer. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5907720
Yang W Y , Yang J R , Chen S Q , et al. Seismic data fault detection based on U-Net deep learning network. Oil Geophysical Prospecting, 2021, 56 (4): 688- 697.
Yang Y C, Soatto S. 2020. FDA: Fourier domain adaptation for semantic segmentation. //Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 4084-4094.
Zhang B , Pu Y T , Xu Z H , et al. Exploring factors affecting the performance of deep learning in seismic fault attribute computation. Interpretation, 2022, 10 (4): T619- T636.
Zhang M M , Wu B Y , Ma D B , et al. Loss function comparison for fault interpretation of three-dimensional seismic data based on deep neural network. Oil Geophysical Prospecting, 2023, 58 (6): 1299- 1312.
Zhang Q, Yusifov A, Joy C, et al. 2019. FaultNet: A deep CNN model for 3D automated fault picking. //SEG Technical Program Expanded Abstracts. SEG, 2413-2417.
Zhang Z , Yan Z , Gu H M . Automatic fault recognition with residual network and transfer learning. Oil Geophysical Prospecting, 2020, 55 (5): 950- 956.
Zhang Z , Yan Z , Jing J K , et al. Generating paired seismic training data with cycle-consistent adversarial networks. Remote Sensing, 2023, 15 (1): 265
Zhang Z R , Chen R , Ma J W . Improving seismic fault recognition with self-supervised pre-training: A study of 3D transformer-based with multi-scale decoding and fusion. Remote Sensing, 2024, 16 (5): 922
Zhao S , Ding R W , Han T J , et al. Fault2SeisGAN: A method for the expansion of fault datasets based on generative adversarial networks. Frontiers in Earth Science, 2023, 11: 1091803
Zhao T, Mukhopadhyay P. 2018. A fault-detection workflow using deep learning and image processing. //SEG Technical Program Expanded Abstracts. SEG, 1966-1970.
Zhao T. 2019. 3D convolutional neural networks for efficient fault detection and orientation estimation. //SEG Technical Program Expanded Abstracts. SEG, 2418-2422.
Zhao Y, Yue Y X, Huang J L, et al. 2015. Study and application of three parameters wavelet multi-scale ant tracking technology. //SEG Technical Program Expanded Abstracts 2015. SEG, 1866-1870.
Zhou R S , Yao X M , Hu G M , et al. Learning from unlabelled real seismic data: Fault detection based on transfer learning. Geophysical Prospecting, 2021, 69 (6): 1218- 1234.
Zhou R S , Zhou C , Wang Y J , et al. Frequency adaptive fault detection by feature pyramid network with wavelet transform. Geophysics, 2023, 88 (6): IM113- IM130.
Zhu D L , Li L , Guo R , et al. 3D fault detection: Using human reasoning to improve performance of convolutional neural networks. Geophysics, 2022, 87 (4): IM143- IM156.
德宽 , 学善 , 一惠 , 等. 基于深度卷积神经网络的地震数据断层识别方法. 石油地球物理勘探, 2021, 56 (1): 1- 8.
, . 基于人工智能的断层自动识别研究进展. 地球物理学进展, 2021, 36 (1): 119- 131.
易龙 , 晓涛 , 锦涛 , 等. 基于3D U-Net ++ L3卷积神经网络的断层识别. 地球物理学进展, 2022, 37 (2): 607- 616.
婷婷 , 思宇 , 世忠 , 等. 断层识别方法综述及研究进展. 地球物理学进展, 2018, 33 (4): 1507- 1514.
乃豪 , 时桢 , , 等. 改进的整体嵌套边缘检测地震断层识别技术. 石油地球物理勘探, 2022, 57 (3): 499- 509.
凤明 , 瑞刚 , 军华 , 等. UNet ++和迁移学习相结合的复杂断裂识别方法研究. 地球物理学进展, 2022, 37 (3): 1100- 1111.
, , , 等. 基于像素差分神经网络的断层识别方法. 地球物理学报, 2023, 66 (4): 1649- 1663.
, 军华 , 凤明 , 等. 构建三维深度监督网络的断层检测方法. 石油地球物理勘探, 2021, 56 (5): 947- 957.
, 仁伟 , 年添 , 等. 基于深度学习的地震断层智能识别研究进展. 地球物理学进展, 2022, 37 (1): 298- 311.
午阳 , 佳润 , 双全 , 等. 基于U-Net深度学习网络的地震数据断层检测. 石油地球物理勘探, 2021, 56 (4): 688- 697.
苗苗 , 帮玉 , 德波 , 等. 深度神经网络三维地震资料断层解释损失函数对比. 石油地球物理勘探, 2023, 58 (6): 1299- 1312.
, , 汉明 . 基于残差网络与迁移学习的断层自动识别. 石油地球物理勘探, 2020, 55 (5): 950- 956.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(18601 KB)

Accesses

Citation

Detail

Sections
Recommended

/