Semi-supervised learning seismic wave impedance inversion based on CNN-BiLSTM

Ping ZHOU, Yan ZHAO

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1812-1821.

PDF(5776 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5776 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1812-1821. DOI: 10.6038/pg2025II0205

Semi-supervised learning seismic wave impedance inversion based on CNN-BiLSTM

Author information +
History +

Abstract

With its powerful feature extraction ability, deep learning has shown great potential in various fields and provides new ideas for solving various complex problems. Deep learning models often require a large amount of labeled data for training, but in practice, limited logging data are obtained due to cost, resulting in insufficient training samples. Therefore, this paper proposes a CNN-BiLSTM based semi-supervised learning method for seismic wave impedance inversion. The interpolation resampling technique is used to augment the wave impedance, and then a semi-supervised learning strategy is introduced to train the augmented data, and the unlabeled data information is used to improve the generalization ability and performance of the model. The Marmusi-2 model test shows that it can achieve better inversion results with only a small amount of data augmentation, which verifies the effectiveness of the method in the case of small samples.

Key words

Wave impedance inversion / Long Short-Term Memory / Data augmentation / Semi-supervised learning

Cite this article

Download Citations
Ping ZHOU , Yan ZHAO. Semi-supervised learning seismic wave impedance inversion based on CNN-BiLSTM[J]. Progress in Geophysics. 2025, 40(4): 1812-1821 https://doi.org/10.6038/pg2025II0205

References

Alfarraj M , AlRegib G . Semisupervised sequence modeling for elastic impedance inversion. Interpretation, 2019, 7 (3): SE237- SE249.
Chen J X , Lu P F , Yuan Z L , et al. CUNet deep learning method and its application in fault recognition. Progress in Geophysics, 2024, 39 (2): 561- 571.
Das V , Pollack A , Wollner U , et al. Convolutional neural network for seismic impedance inversion. Geophysics, 2019, 84 (6): R869- R880.
Donahue J, Anne Hendricks L, Guadarrama S, et al. 2015. Long-term recurrent convolutional networks for visual recognition and description. //Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2625-2634.
Gholami A . Nonlinear multichannel impedance inversion by total-variation regularization. Geophysics, 2015, 80 (5): R217- R224.
Guo R , Zhang J J , Liu D , et al. Application of bi-directional long short-term memory recurrent neural network for seismic impedance inversion. //81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 2019, 2019: 1- 5.
Liu C , Song C , Lu Q , et al. Impedance inversion based on L1 norm regularization. Journal of Applied Geophysics, 2015, 120: 7- 13.
Luo D , Wang H B , Cai F , et al. Application and challenges of deep learning technology in seismic data-based reservoir prediction. Oil Geophysical Prospecting, 2024, 59 (3): 640- 651.
McKinley S , Levine M . Cubic spline interpolation. College of the Redwoods, 1998, 45 (1): 1049- 1060.
Nie R , Yue J H , Deng S Q . Application of immune genetic algorithm in wave impedance inversion. Application Research of Computers, 2010, 27 (4): 1273- 1276.
Ou B L , Zeng T S , Liu T C , et al. Seismic data reconstruction and de-noising based on Huber-U-Net network. Progress in Geophysics, 2023, 38 (6): 2540- 2552.
Peng Z , Xu H Q . Post-stack seismic impedance inversion method based on TransUNet neural network. Progress in Geophysics, 2024, 39 (2): 704- 715.
Song L , Yin X Y , Zong Z Y , et al. Deep learning seismic impedance inversion based on prior constraints. Oil Geophysical Prospecting, 2021, 56 (4): 716- 727.
Wang Z F , Xu H Q , Yang M Q , et al. Study on the influence of preprocessing and hyperparameters on temporal convolutional network seismic impedance inversion. Progress in Geophysics, 2022, 37 (5): 2062- 2071.
Wu B Y , Meng D L , Wang L L , et al. Seismic impedance inversion using fully convolutional residual network and transfer learning. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (12): 2140- 2144.
Wu X M , Liang L M , Shi Y Z , et al. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 2019, 84 (3): IM35- IM45.
Wu X M , Yan S S , Bi Z F , et al. Deep learning for multidimensional seismic impedance inversion. Geophysics, 2021, 86 (5): R735- R745.
Yang F S , Ma J W . Deep-learning inversion: A next-generation seismic velocity model building method. Geophysics, 2019, 84 (4): R583- R599.
Yang L Q , Chen W , Wang H , et al. Deep learning seismic random noise attenuation via improved residual convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (9): 7968- 7981.
Yi X D , Wu B Y , Meng D L , et al. Application of data augmentation and active learning to seismic wave impedance inversion. Oil Geophysical Prospecting, 2021, 56 (4): 707- 715.
Zhang F C , Yin X Y , Wu G C , et al. Impedance inversion by using annealing neural network. Journal of the University of Petroleum, China, 1997, 21 (6): 16- 18. 16-18, 23
Zhang J , Zhao X Y , Chen Y K , et al. Domain knowledge-guided data-driven prestack seismic inversion using deep learning. Geophysics, 2023, 88 (2): M31- M47.
继兴 , 鹏飞 , 兆林 , 等. CUNet断层智能识别方法及其在断层识别中的应用研究. 地球物理学进展, 2024, 39 (2): 561- 571.
, 宏斌 , , 等. 深度学习技术在地震储层预测中的应用及挑战. 石油地球物理勘探, 2024, 59 (3): 640- 651.
, 建华 , 帅奇 . 免疫遗传算法及其在波阻抗反演中的应用. 计算机应用研究, 2010, 27 (4): 1273- 1276.
炳霖 , 同生 , 天成 , 等. 基于Huber-U-Net网络的地震数据重建与去噪. 地球物理学进展, 2023, 38 (6): 2540- 2552.
, 辉群 . 基于TransUNet神经网络的叠后地震波阻抗反演方法. 地球物理学进展, 2024, 39 (2): 704- 715.
, 兴耀 , 兆云 , 等. 基于先验约束的深度学习地震波阻抗反演方法. 石油地球物理勘探, 2021, 56 (4): 716- 727.
泽峰 , 辉群 , 梦琼 , 等. 时域卷积神经网络地震波阻抗反演因素影响的研究. 地球物理学进展, 2022, 37 (5): 2062- 2071.
小蝶 , 帮玉 , 德林 , 等. 数据增广和主动学习在波阻抗反演中的应用. 石油地球物理勘探, 2021, 56 (4): 707- 715.
繁昌 , 兴耀 , 国忱 , 等. 用模拟退火神经网络技术进行波阻抗反演. 石油大学学报(自然科学版), 1997, 21 (6): 16- 18. 16-18, 23

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5776 KB)

Accesses

Citation

Detail

Sections
Recommended

/