Frequency extension method for seismic data based on time-domain fractional differential fusion

YouXi YUE, ChuanYou GE, JunNan FU, YiDu CHEN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1440-1450.

PDF(12763 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(12763 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1440-1450. DOI: 10.6038/pg2025II0212

Frequency extension method for seismic data based on time-domain fractional differential fusion

Author information +
History +

Abstract

Time-domain fractional differentiation of seismic signals is a signal processing method in the field of differentiation. Compared with the traditional integer order differential processing and frequency domain seismic signal extension methods, the multi-scale characteristics of seismic signals can be better described and the data reliability can be improved. In order to deal with complex seismic signals with narrow frequency bands and obtain more refined seismic data, this paper proposes a seismic data extension method based on multi-level fractional differential adaptive fusion in time domain, which automatically obtains the weighted fusion coefficient by using the method of adaptive dynamic adjustment of the weighted coefficient according to the characteristics of fractional differential signals in different frequency bands in different frequency bands and the envelope of the spectrum of differentially differentiated signals of different orders. The seismic signal after frequency extension processing effectively reduces the influence of seismic wavelet band limiting. The model test and practical application show that the fractional differential operation in the time domain of the seismic signal highlights the high-frequency component of the original seismic signal and maintains the low-frequency component of the original signal. With the increase of the differential order, the main frequency of the differential signal increases, and the number of sidelobes increases while the width of the sidelobes narrows, and the ratio of the sidelobe value to the mainlobe value also increases gradually. After multi-level fractional differential adaptive fusion processing, the sidelobe amplitude can be effectively suppressed, the frequency band range can be broadened, and the ability to explain and characterize the reservoir can be provided more clearly, which can improve the ability to identify thin interbeds to a certain extent.

Key words

Time-domain / Fractional differentiation / Frequency extension / Resolution / Multi-level adaptive fusion

Cite this article

Download Citations
YouXi YUE , ChuanYou GE , JunNan FU , et al. Frequency extension method for seismic data based on time-domain fractional differential fusion[J]. Progress in Geophysics. 2025, 40(4): 1440-1450 https://doi.org/10.6038/pg2025II0212

References

Guo X, Yong X S, Gao J H, et al. Seismic bandwidth broadening method based on bi-spectrum and multi-order differential fusion. Progress in Geophysics, 2016a, 31 (5): 2095- 2102.
Guo X, Yong X S, Gao J H, et al. Seismic bandwidth broadening method based on multi-order differential fusion in frequency domain. Geophysical Prospecting for Petroleum, 2016b, 55 (2): 271- 279.
Kanasewich E R. Time Sequence Analysis in Geophysics. 3rd ed. Edmonton: University of Alberta Press, 1981
Karczewska A, Lizama C. Solutions to stochastic fractional oscillation equations. Applied Mathematics Letters, 2010, 23 (11): 1361- 1366.
Li Y M, Ren T T. Research on adaptive fractional differential wavelet image enhancement method. Microelectronics & Computer, 2015, 32 (6): 130- 133.
Liang J H. Some properties of Caputo fractional derivative. Mathematics in Practice and Theory, 2021, 51 (9): 256- 269.
Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley-Inter Science., 1993
Peng J L, Peng Z M, Zhang J, et al. De-noising method of seismic signal based on adaptive filtering in fractional domain. Progress in Geophysics, 2012, 27 (4): 1730- 1737.
Podlubny I. Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of Their Applications. San Diego: Academic Press., 1999
Podlubny I. Matrix approach to discrete fractional calculus. Fractional Calculus and Applied Analysis, 2000, 3 (4): 359- 386.
Sajid M, Ghosh D. A fast and simple method of spectral enhancement. Geophysics, 2014, 79 (3): V75- V80.
Song L W, Hou X H, Shi Y, et al. Viscoacoustic least-squares reverse time migration based on threshold-hybrid norm. Progress in Geophysics, 2024, 39 (1): 334- 343.
Wang X D. 2008. Riemann-Liouville fractional calculus and the proving of the properties [Master's thesis](in Chinese). Taiyuan: Taiyuan University of Technology.
Yang Y B. 2017. Spectral methods for some fractional differential equations [Ph. D. thesis](in Chinese). Shanghai: Shanghai University.
Yuan X, Yu J B. Complex analytical wavelet transform for the extraction and analysis of speech signal envelops. Acta Electronica Sinica, 1999, 27 (5): 143- 145.
Zhang W G, Liu G, Luo H. Some properties of the fractional differential. Journal of Hainan Tropical Ocean University, 2011, 18 (5): 8- 10.
Zhang Y R, Bai J, Wang L. An improved MFCC algorithm based on multiple window spectrum estimation and smoothing spectrum envelope. Science Technology and Engineering, 2014, 14 (19): 253- 256. 253-256, 274
Zhao S L, Wang X M, Wang J H. A simple frequency compensation method. Oil Geophysical Prospecting, 1994, 29 (2): 231- 235.
Zhao Y Y. 2013. Some theoretical properties and examples of the fractional calculus [Master's thesis](in Chinese). Zhengzhou: Zhengzhou University.
Zhou J L, Pu Y F, Liao K. Principle of Fractional Calculus and Its Application in Modern Signal Analysis and Processing. Beijing: Science Press., 2010
, 学善, 建虎, 等. 基于二阶谱及多阶微分融合的频谱拓展方法. 地球物理学进展, 2016a, 31 (5): 2095- 2102.
, 学善, 建虎, 等. 基于频率域多阶微分融合的地震频带拓宽方法研究. 石油物探, 2016b, 55 (2): 271- 279.
雅梅, 婷婷. 自适应分数阶微分小波图像增强方法的研究. 微电子学与计算机, 2015, 32 (6): 130- 133.
家辉. Caputo分数阶导数的一些性质. 数学的实践与认识, 2021, 51 (9): 256- 269.
建亮, 真明, , 等. 基于分数域自适应滤波的地震信号去噪方法. 地球物理学进展, 2012, 27 (4): 1730- 1737.
利伟, 晓慧, , 等. 基于阈值混合范数的黏声最小二乘逆时偏移. 地球物理学进展, 2024, 39 (1): 334- 343.
王小东. 2008. Riemann-Liouville分数阶微积分及其性质证明[硕士论文]. 太原: 太原理工大学.
杨宇博. 2017. 若干分数阶微分方程的谱方法[博士论文]. 上海: 上海大学.
, 厥邦. 复解析小波变换与语音信号包络提取和分析. 电子学报, 1999, 27 (5): 143- 145.
稳根, , . 分数阶微分的一些性质. 琼州学院学报, 2011, 18 (5): 8- 10.
怡然, , . 基于多窗频谱估计和平滑幅度谱包络的Mel频率倒谱系数(MFCC)改进算法. 科学技术与工程, 2014, 14 (19): 253- 256. 253-256, 274
圣亮, 晓明, 建华. 一种简易的频率补偿方法. 石油地球物理勘探, 1994, 29 (2): 231- 235.
赵莹莹. 2013. 分数阶微积分的若干理论及应用[硕士论文]. 郑州: 郑州大学.
激流, 亦非, . 分数阶微积分原理及其在现代信号分析与处理中的应用. 北京: 科学出版社, 2010

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(12763 KB)

Accesses

Citation

Detail

Sections
Recommended

/