Research on microscopic damage characteristics of fracturing fluid in different types of tight sandstone reservoirs with the NMR

YongGang XIE, HuaQiang SHI, XiaoLin LI, LiAn ZHU, LeKai HOU, XiaoRui LIU, Li DING, XiaoHang LI, Teng LI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 568-579.

PDF(6149 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6149 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 568-579. DOI: 10.6038/pg2025II0219

Research on microscopic damage characteristics of fracturing fluid in different types of tight sandstone reservoirs with the NMR

Author information +
History +

Abstract

The microscopic pore structure of tight sandstone reservoirs exhibits strong heterogeneity, and the characteristics of hydraulic fracturing fluid damage vary widely. By finely classifying the types of tight sandstone reservoirs and clarifying the microscopic damage characteristics of different types of tight sandstone reservoirs, effective guidance can be provided for hydraulic fracturing treatments of tight sandstone reservoirs. Based on this, the study focuses on the tight sandstone reservoirs of the Shanxi Formation in the northeastern part of the Ordos Basin. Building upon a refined characterization of reservoir types, nuclear magnetic resonance (NMR) quantitative characterization technology was employed to study the microscopic damage characteristics of different types of reservoirs. The results show that the tight sandstone reservoirs of the Shanxi Formation can be classified into three types: type Ⅰ, type Ⅱ, and type Ⅲ. Type Ⅰ reservoirs exhibit good porosity and permeability properties, high pore-throat selectivity coefficients, and a high percentage of movable fluids. Type Ⅱ reservoirs have relatively good porosity and permeability properties, good pore-throat selectivity coefficients but poor fluid mobility, while Type Ⅲ reservoirs exhibit overall poor physical characteristics. The results of NMR T2 spectra and T1-T2 spectra of hydraulic fracturing fluid microscopic damage show that Types Ⅰ and Ⅲ reservoirs suffer more significant fluid damage, which is closely related to the development of large pores and microfractures in these two types of reservoirs.

Key words

Tight sandstone / Fracturing fluid damage / Reservoir type / NMR T2 spectrum / NMR T1-T2 spectrum

Cite this article

Download Citations
YongGang XIE , HuaQiang SHI , XiaoLin LI , et al . Research on microscopic damage characteristics of fracturing fluid in different types of tight sandstone reservoirs with the NMR[J]. Progress in Geophysics. 2025, 40(2): 568-579 https://doi.org/10.6038/pg2025II0219

References

Cang H , Du G C , Wang C E , et al. Characteristics and classification evaluation of pore throat structure in Chang 7 tight reservoir of Yanchang Formation in Ganquan Oilfield. Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50 (5): 525- 536.
Chen F Y , Zhou Y , Yang D J , et al. Study of pore structure of tight sandstone reservoir based on fractal theory: A case study from Chang 7 tight sandstone of Yanchang formation in Qingcheng area, Ordos Basin. Journal of China University of Mining & Technology, 2022, 51 (5): 941- 955.
Chen L Y , Qian Y G , Liao L Y , et al. Comprehensive evaluation of He7 effective reservoir of middle Permian lower Shihezi formation in well block of Su-14 of Sulige gas field. Mineralogy and Petrology, 2021, 41 (2): 109- 117.
Guo J C , Li Y , Wang S B . Hydrogen bond inhibition method: Reducing the adsorption damage of guar fracturing fluid to sandstone reservoirs. Natural Gas Industry, 2019, 39 (7): 57- 62.
Li N , Wang Y W , Zhang S J , et al. Study on water block in tight sandstone gas reservoirs and solutions thereof. Drilling Fluid & Completion Fluid, 2016, 33 (4): 14- 19.
Li P Y , He X D , Zhou C J , et al. Mineral compositions and microstructural characteristics of the tight sandstone reservoir in the Sulige area and their potential influence on hydraulic fracturing. Hydrogeology & Engineering Geology, 2023, 50 (3): 1- 11.
Li Y Z , Shang L , Wang Q H , et al. Comprehensive classification of highly heterogeneous low permeability-tight sandstone reservoir in Faulted Basin: Taking Nanpu sag of Bohai Bay Basin as an example. Journal of Jilin University (Earth Science Edition), 2022, 52 (6): 1830- 1843.
Liu B F , Zhang Q J , Chen X , et al. Imbibition characteristics of fracturing fluid in the tight oil reservoir and water lock damage evaluation. Fault-Block Oil and Gas Field, 2021, 28 (3): 318- 322.
Liu H F , Xiao Y , Liu J , et al. Feasibility evaluation of clean fracturing fluid for Dibei tight gas reservoir. Petroleum Geology & Oilfield Development in Daqing, 2021, 40 (4): 169- 174.
Ma W Y , Huang K , Wang P , et al. Mechanism of waterproof locking in tight sandstone gas reservoir based on low field nuclear magnetic resonance technology. Science Technology and Engineering, 2024, 24 (4): 1459- 1470.
Mei C , Li Z H , Cheng N , et al. Imbibition damage law of Linxing tight gas fracturing fluid in the whole process. Science Technology and Engineering, 2021, 21 (22): 9330- 9336.
Meng J , Zhang LY , Li R , et al. Microscopic pore structure characteristics of tight sandstone reservoirs and its classification evaluation. Special Oil & Gas Reservoirs, 2023, 30 (4): 71- 78.
Peng Y F , Li Y Q , Zhang W , et al. Mineral characteristics of tight sandstone in Fuyu reservoir of Longxi area and its influence on development effect. Petroleum Geology & Oilfield Development in Daqing, 2021, 40 (1): 162- 174.
Pi W , Chen J Y . Characteristics of tight sandstone reservoirs and logging identification in the Northern Ordos Basin. Science Technology and Engineering, 2023, 23 (31): 13265- 13272.
Qi S J , Jiang J F , Jiang J , et al. Fracturing fluid damage evaluation and microscopic damage mechanism study for expansion tight oil test Area of Long 26. Drilling Fluid & Completion Fluid, 2021, 38 (5): 648- 656.
Ren J , Jiang S X , Luo Z L , et al. Characteristics and classification evaluation of tight sandstone reservoir in Xujiahe Formation of Tongnanba Gas Field. Fault-Block Oil & Gas Field, 2023, 30 (6): 914- 924.
Wang M L , Zhang S A , Guan H , et al. Relationship between characteristics of tight oil reservoirs and fracturing fluid damage: A case from Chang 7 Member of the Triassic Yanchang Fm in Ordos Basin. Oil & Gas Geology, 2015, 36 (5): 848- 854.
Wang T , Li C Z , Xiao X F , et al. Application of new low damage non flow-back guanidine gum fracturing fluid in tight oil reservoir. Journal of Shaanxi University of Science & Technology, 2023, 41 (5): 94- 101.
Wang W , Song Y J , Huang J , et al. Fractal characteristics of pore-throat structure in tight sandstones using high-pressure mercury intrusion porosimetry. Bulletin of Geological Science and Technology, 2021, 40 (4): 22- 30. 22-30, 48
Wang Y X , Xie B , Lai Q , et al. Evaluation of pore structure and classification in tight gas reservoir based on NMR logging. Progress in Geophysics, 2023, 38 (2): 759- 767.
Wang Z Z , Fu X H , Hao M , et al. Experimental insights into the adsorption-desorption of CH4/N2 and induced strain for medium-rank coals. Journal of Petroleum Science and Engineering, 2021, 204: 108705
Wang Z Z , Fu X H , Pan J N , et al. Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal. Energy, 2023, 275: 127377
Wu Y F , Liu C L , Feng X L , et al. Microstructural characteristics and classification evaluation of tight sandstone reservoirs: a case study of the Chang 9 reservoir in the Nanliang Oilfield of the Ordos Basin. Fault-Block Oil & Gas Field, 2023, 30 (2): 246- 253. 246-253, 300
Xu Y Q , He Y H , Bu G P , et al. Establishment of classification and evaluation criteria for tight reservoirs based on characteristics of microscopic pore throat structure and percolation: a case study of Chang 7 reservoir in Longdong area, Ordos Basin. Petroleum Geology & Experiment, 2019, 41 (3): 451- 460.
Yu C P , Zhang B H , Li Z H , et al. On factors influencing fracture damage in tight gas reservoirs, Linxing block. Special Oil & Gas Reservoirs, 2022, 29 (1): 141- 146.
Yuan H Q , Deng X Y , Du H Y , et al. Characterizing the heterogeneity of tight sandstone in outcropped Permian Shanxi Formation, Liujiang Basin. Oil & Gas Geology, 2023, 44 (2): 468- 479.
Zhang C B , Wang Y L , Chen M X , et al. Research progress on high temperature resistant guar gum fracturing fluid and its damage mechanism to reservoirs. Chemical Industry and Engineering Progress, 2022, 41 (11): 5912- 5924.
Zhao J S , Li B , Ma J Y , et al. Experimental study on fracturing fluid damage in tight sandstone reservoir. Science Technology and Engineering, 2022, 22 (35): 15592- 15597.
, 贵超 , 聪娥 , 等. 甘泉油田延长组长7致密储层孔喉结构特征及分类评价. 成都理工大学学报(自然科学版), 2023, 50 (5): 525- 536.
富瑜 , , 栋吉 , 等. 基于分形理论的致密砂岩储层孔隙结构研究——以鄂尔多斯盆地庆城地区延长组长7段为例. 中国矿业大学学报, 2022, 51 (5): 941- 955.
罗元 , 玉贵 , 璐瑶 , 等. 苏里格气田苏14井区中二叠统下石盒子组盒7段有效储层综合评价. 矿物岩石, 2021, 41 (2): 109- 117.
建春 , , 世彬 . 氢键抑制方法减少瓜尔胶压裂液对砂岩储层的吸附伤害. 天然气工业, 2019, 39 (7): 57- 62.
, 有伟 , 绍俊 , 等. 致密砂岩气藏水锁损害及解水锁实验研究. 钻井液与完井液, 2016, 33 (4): 14- 19.
培月 , 晓东 , 长静 , 等. 苏里格地区致密砂岩矿物组成与微观结构及其对水力压裂的潜在影响. 水文地质工程地质, 2023, 50 (3): 1- 11.
彦泽 , , 群会 , 等. 断陷盆地强非均质低渗-致密砂岩储层综合分类——以渤海湾盆地南堡凹陷为例. 吉林大学学报(地球科学版), 2022, 52 (6): 1830- 1843.
博峰 , 庆九 , , 等. 致密油储层压裂液渗吸特征及水锁损害评价. 断块油气田, 2021, 28 (3): 318- 322.
会锋 , , , 等. 迪北致密气藏清洁压裂液可行性评价. 大庆石油地质与开发, 2021, 40 (4): 169- 174.
伟云 , , , 等. 基于低场核磁共振技术的致密砂岩气藏防水锁作用机理研究. 科学技术与工程, 2024, 24 (4): 1459- 1470.
, 紫晗 , , 等. 临兴致密气压裂液全过程渗吸伤害规律. 科学技术与工程, 2021, 21 (22): 9330- 9336.
, 莉莹 , , 等. 致密砂岩储层微观孔隙结构特征及其分类评价. 特种油气藏, 2023, 30 (4): 71- 78.
颖锋 , 宜强 , , 等. 龙西地区扶余油层致密砂岩矿物特征及其对开发效果的影响. 大庆石油地质与开发, 2021, 40 (1): 162- 174.
, 敬轶 . 鄂尔多斯盆地北部致密砂岩储层特征及测井识别. 科学技术与工程, 2023, 23 (31): 13265- 13272.
生金 , 建方 , , 等. 龙26外扩致密油试验区压裂液损害评价及其微观机理. 钻井液与完井液, 2021, 38 (5): 648- 656.
, 淑霞 , 周亮 , 等. 通南巴气田须家河组致密砂岩储层特征及分类评价. 断块油气田, 2023, 30 (6): 914- 924.
明磊 , 遂安 , , 等. 致密油储层特点与压裂液伤害的关系——以鄂尔多斯盆地三叠系延长组长7段为例. 石油与天然气地质, 2015, 36 (5): 848- 854.
, 成政 , 旭峰 , 等. 新型低伤害无返排胍胶压裂液在致密油储层中的应用. 陕西科技大学学报, 2023, 41 (5): 94- 101.
, 渊娟 , , 等. 利用高压压汞实验研究致密砂岩孔喉结构分形特征. 地质科技通报, 2021, 40 (4): 22- 30. 22-30, 48
跃祥 , , , 等. 基于核磁共振测井的致密气储层孔隙结构评价与分类. 地球物理学进展, 2023, 38 (2): 759- 767.
云飞 , 成林 , 小龙 , 等. 致密砂岩储层微观结构特征及分类评价——以鄂尔多斯盆地南梁油田长9储层为例. 断块油气田, 2023, 30 (2): 246- 253. 246-253, 300
永强 , 永宏 , 广平 , 等. 基于微观孔喉结构及渗流特征建立致密储层分类评价标准——以鄂尔多斯盆地陇东地区长7储层为例. 石油实验地质, 2019, 41 (3): 451- 460.
翠沛 , 滨海 , 紫晗 , 等. 临兴区块致密气储层压裂损害影响因素. 特种油气藏, 2022, 29 (1): 141- 146.
红旗 , 馨雨 , 会尧 , 等. 柳江盆地二叠系山西组露头致密砂岩储层非均质性表征方法. 石油与天然气地质, 2023, 44 (2): 468- 479.
传保 , 彦玲 , 孟鑫 , 等. 耐高温胍胶压裂液及其对储层的伤害机理研究进展. 化工进展, 2022, 41 (11): 5912- 5924.
金省 , , 景洋 , 等. 致密砂岩油藏压裂液伤害实验研究. 科学技术与工程, 2022, 22 (35): 15592- 15597.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(6149 KB)

Accesses

Citation

Detail

Sections
Recommended

/