Research on the effectiveness of semi-supervised generative adversarial network to improve the identification rate of microseismic events based on neural network method

ShiJie ZHOU, HongBing GUI, JunNing GUO, QingHui MAO, Peng WANG, ZhiXian GUI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1822-1834.

PDF(5315 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5315 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1822-1834. DOI: 10.6038/pg2025II0220

Research on the effectiveness of semi-supervised generative adversarial network to improve the identification rate of microseismic events based on neural network method

Author information +
History +

Abstract

Accurate identification of microseismic events is the basis of data processing in microseismic monitoring. To address the issue of low accuracy in identifying microseismic events using deep learning methods, this paper firstly constructs a basic semi-supervised Generative Adversarial Network (GAN) classification model based on downhole microseismic monitoring data. The model consists of a generator for simulating the distribution of real data and a discriminator for identifying microseismic events. Next, layer normalization is introduced to reduce the training loss of the discriminator. Meanwhile, a convolutional interpolation method is applied to the generator to improve its ability of autonomously learning and extracting detailed signal features. In order to verify the effectiveness of the proposed method, actual microseismic data from fracturing monitoring is used as the dataset for training and testing the model. Experimental results indicate that the identification method based on semi-supervised GAN outperforms the identification method based on convolutional neural network in terms of accuracy and precision. Compared with the latter model, the former model has faster convergence and more stable training results. The accuracy of the test set for the improved semi-supervised GAN identification model can reach 97%, and all the test indicators of this model have been improved. The improved method can better learn the shape features of microseismic events, effectively identifying microseismic event samples, which increases the identification rate of microseismic events based on neural network classification models.

Key words

Microseismic / Event identification / Generative Adversarial Network (GAN) / Layer normalization / Convolutional interpolation

Cite this article

Download Citations
ShiJie ZHOU , HongBing GUI , JunNing GUO , et al . Research on the effectiveness of semi-supervised generative adversarial network to improve the identification rate of microseismic events based on neural network method[J]. Progress in Geophysics. 2025, 40(4): 1822-1834 https://doi.org/10.6038/pg2025II0220

References

Bi L F , Zeng Z Y , Zhang J Z , et al. Picking arrival times of microseismic events from surface monitoring data with waveform polarity reversals. Geophysical Prospecting for Petroleum, 2020, 59 (3): 344- 355.
Bi M X , Huang H M , Bian Y J , et al. A study on seismic signal HHT features extraction and SVM recognition of earthquake and explosion. Progress in Geophysics, 2011, 26 (4): 1157- 1164.
Cai X H , Zhang Y M , Chen H F , et al. Automatic identification of earthquake and explosion based on wavelet transform and neural network. Journal of Geodesy and Geodynamics, 2020, 40 (6): 634- 639.
Cao J H , Gu H M , Shang X M . Microseismic signal identification with multichannel matching pursuit based on local coherence spectrum constraint. Oil Geophysical Prospecting, 2017, 52 (4): 704- 714. 704-714, 623
Chen Z , Ding L L , Luo H , et al. Mine microseismic events classification based on improved wavelet decomposition and ELM. Journal of China Coal Society, 2020, 45 (S2): 637- 648.
Fan X , Cheng J Y , Wang Y H , et al. Intelligent recognition of coal mine microseismic signal based on wavelet scattering decomposition transform. Journal of China Coal Society, 2022, 47 (7): 2722- 2731.
Feng Q , Han L G , Zhao B H . Localizing microseismic events using semi-supervised generative adversarial networks. IEEE Trans. Geosci. Remote Sens., 2022, 60: 5923908
Huang L Q , Li J , Hao H , et al. Micro-seismic event detection and location in underground mines by using Convolutional Neural Networks (CNN) and deep learning. Tunnelling and Underground Space Technology, 2018, 81: 265- 276.
Jiang Y R , Ning J Y . Automatic detection of seismic body-wave phases and determination of their arrival times based on support vector machine. Chinese J. Geophys., 2019, 62 (1): 361- 373.
Li B J , Huang H M , Wang T T , et al. Research on seismic signal classification and recognition based on STFT and CNN. Progress in Geophysics, 2021, 36 (4): 1404- 1411.
Li H J , Wang R Q , Cao S Y , et al. Weak signal detection using multiscale morphology in microseismic monitoring. J. Appl. Geophys., 2016, 133: 39- 49.
Li Q. 2005. The application of mathematical morphology in seismic data processing [Master's thesis] (in Chinese). Beijing: China University of Petroleum, Beijing.
Liang H , Sun L , Chen S Q , et al. Research on seismic event classification based on SVM algorithm: An application in Northeast China. Chinese J. Geophys., 2023, 66 (12): 5030- 5040.
Lin J H , Miao Q , Surawech C , et al. High-resolution 3D MRI with deep generative networks via novel slice-profile transformation super-resolution. IEEE Access, 2023, 11: 95022- 95036.
Liu H Q , Kang X D , Li B , et al. Comparative study on classification and recognition of medical images using deep learning network. Computer Science, 2021, 48 (S1): 89- 94.
Ma X F. 2017. Automatic detection on micro-seismic event identification and phase first arrival in low SNR signal [Master's thesis] (in Chinese). Qingdao: Shandong University of Science and Technology.
Maxwell S C , Rutledge J , Jones R , et al. Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics, 2010, 75 (5): 75A129- 75A137.
Pan Y X , Tian X , Gan Z L , et al. Five-category detection method for microseismic events based on residual network. Oil Geophysical Prospecting, 2024, 59 (3): 392- 403.
Qiu H M , Liu J M , Fan W C . Discrimination and classification of seismic signals by BP neural networks. Computer Applications and Software, 2005, 22 (7): 74- 76.
Sebtosheikh M A , Salehi A . Lithology prediction by support vector classifiers using inverted seismic attributes data and petrophysical logs as a new approach and investigation of training data set size effect on its performance in a heterogeneous carbonate reservoir. J. Petrol. Sci. Eng., 2015, 134: 143- 149.
Sheng L , Xu X L , Wang W B , et al. Detection of microseismic events based on time-frequency analysis and convolutional neural network. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45 (5): 54- 63.
Tian X , Zhang W , Zhang X , et al. Comparison of single-trace and multiple-trace polarity determination for surface microseismic data using deep learning. Seismological Research Letters, 2020, 91 (3): 1794- 1803.
Wang G G , Guo T , Yu Y , et al. Multilayer perceptron generative adversarial network based on semi-supervised learning. Journal of Chinese Computer Systems, 2019, 40 (11): 2297- 2303.
Wang H W , Xu L M , Yu H T , et al. Research on prediction of high energy microseismic events in rock burst mines based on BP neural network. Scientific Reports, 2024, 14 (1): 29934
Wang W B , Xu X L , Sheng L , et al. Detection of microseismic events based on convolutional neural network. Oil Geophysical Prospecting, 2020, 55 (5): 939- 949. 939-949, 929
Wang Y Y , Mao Z C , Yang Y H . Research on scene text detection and recognition algorithm based on improved MTSv2. Computer Measurement & Control, 2024, 32 (9): 256- 261.
Wen X X , Shen X Z , Zhou Q M . Study on the characters of the aftershocks of Beiliu 5. 2 earthquake using machine learning method and dense nodal seismic array. Chinese J. Geophys., 2022, 65 (9): 3297- 3308.
Yang Y G , Niu F L . Using unsupervised machine learning for clustering seismic noise: a case study of a dense seismic array at the Weifang segment of the Tanlu Fault. Chinese J. Geophys., 2022, 65 (7): 2573- 2594.
Yao K Y. 2018. Neural-network-based seismic phase automatic pickup method [Master's thesis] (in Chinese). Beijing: University of Chinese Academy of Sciences (National Space Science Center, Chinese Academy of Sciences).
Yu Z C , Tan Y Y , Zhai S , et al. Arrival picking and global refinement for microseismic events based on waveform similarity. Chinese J. Geophys., 2019, 62 (12): 4782- 4793.
Zhang X , Yang W X , Li X B , et al. Analysis of the effect of using batch normalization layers in convolutional neural networks on seismic data denoising. Progress in Geophysics, 2024, 39 (1): 183- 196.
Zhang Y L , Yu Z C , Hu T Y , et al. Multi-trace joint downhole microseismic phase detection and arrival picking method based on U-Net. Chinese J. Geophys., 2021, 64 (6): 2073- 2085.
Zhang Y P , Li N , Sun L H , et al. Recognition of weak microseismic events induced by borehole hydraulic fracturing in coal seam based on ResNet-10. Applied Sciences, 2023, 14 (1): 80
Zhao M , Chen S , Yuen D . Waveform classification and seismic recognition by convolution neural network. Chinese J. Geophys., 2019, 62 (1): 374- 382.
Zhao Y , Xu H Y , Yang T H , et al. A hybrid recognition model of microseismic signals for underground mining based on CNN and LSTM networks. Geomatics, Natural Hazards and Risk, 2021, 12 (1): 2803- 2834.
Zheng J , Wu Z X , Li D W , et al. A generative adversarial network-based method for microseismic data denoising. Research and Exploration in Laboratory, 2021, 40 (5): 18- 21.
丽飞 , 志毅 , 建中 , 等. 一种适于存在极性反转的微震初至到时拾取方法. 石油物探, 2020, 59 (3): 344- 355.
明霞 , 汉明 , 银菊 , 等. 天然地震与人工爆破波形信号HHT特征提取和SVM识别研究. 地球物理学进展, 2011, 26 (4): 1157- 1164.
杏辉 , 燕明 , 惠芳 , 等. 基于小波特征和神经网络的天然地震与人工爆破自动识别. 大地测量与地球动力学, 2020, 40 (6): 634- 639.
俊海 , 汉明 , 新民 . 基于局部相关谱约束的多道匹配追踪算法识别微地震信号. 石油地球物理勘探, 2017, 52 (4): 704- 714. 704-714, 623
, 琳琳 , , 等. 基于改进小波分解和ELM的矿山微震事件识别方法. 煤炭学报, 2020, 45 (S2): 637- 648.
, 建远 , 云宏 , 等. 基于小波散射分解变换的煤矿微震信号智能识别. 煤炭学报, 2022, 47 (7): 2722- 2731.
一然 , 杰远 . 基于支持向量机的地震体波震相自动识别及到时自动拾取. 地球物理学报, 2019, 62 (1): 361- 373.
炳君 , 汉明 , 婷婷 , 等. 基于STFT和CNN的地震信号分类识别研究. 地球物理学进展, 2021, 36 (4): 1404- 1411.
李青. 2005. 多尺度形态学在地震资料数字处理中的应用研究[硕士论文]. 北京: 中国石油大学(北京).
, , 姝荞 , 等. 基于支持向量机算法的地震事件分类研究——以东北地区为例. 地球物理学报, 2023, 66 (12): 5030- 5040.
汉卿 , 晓东 , , 等. 利用深度学习网络对医学影像分类识别的比较研究. 计算机科学, 2021, 48 (S1): 89- 94.
马晓峰. 2017. 低信噪比微地震事件辨识与震相初至自动拾取方法[硕士论文]. 青岛: 山东科技大学.
禹行 , , 兆龙 , 等. 应用残差网络的微地震事件五分类检测方法. 石油地球物理勘探, 2024, 59 (3): 392- 403.
宏茂 , 俊民 , 万春 . 基于BP神经网络的地震信号识别分类. 计算机应用与软件, 2005, 22 (7): 74- 76.
, 西龙 , 维波 , 等. 基于时频分析和卷积神经网络的微地震事件检测. 中国石油大学学报(自然科学版), 2021, 45 (5): 54- 63.
格格 , , , 等. 基于半监督学习的多层感知器生成对抗网络. 小型微型计算机系统, 2019, 40 (11): 2297- 2303.
维波 , 西龙 , , 等. 卷积神经网络微地震事件检测. 石油地球物理勘探, 2020, 55 (5): 939- 949. 939-949, 929
艳媛 , 正冲 , 雨涵 . 基于改进MTSv2的场景文本检测和识别算法研究. 计算机测量与控制, 2024, 32 (9): 256- 261.
玺翔 , 旭章 , 启明 . 基于机器学习和短周期密集台阵资料研究北流地震余震特征. 地球物理学报, 2022, 65 (9): 3297- 3308.
勇刚 , 凤林 . 基于无监督机器学习的噪声信号聚类分析——以郯庐断裂带潍坊段短周期密集台阵观测为例. 地球物理学报, 2022, 65 (7): 2573- 2594.
姚开一. 2018. 基于神经网络的地震震相自动拾取方法[硕士论文]. 北京: 中国科学院大学(中国科学院国家空间科学中心).
志超 , 玉阳 , , 等. 基于波形相似特征的微地震事件初至拾取及全局校正. 地球物理学报, 2019, 62 (12): 4782- 4793.
, 万祥 , 小斌 , 等. 卷积神经网络中批量规范化层的使用对地震数据去噪的影响分析. 地球物理学进展, 2024, 39 (1): 183- 196.
逸伦 , 志超 , 天跃 , 等. 基于U-Net的井中多道联合微地震震相识别和初至拾取方法. 地球物理学报, 2021, 64 (6): 2073- 2085.
, , Yuen D . 基于深度学习卷积神经网络的地震波形自动分类与识别. 地球物理学报, 2019, 62 (1): 374- 382.
, 志祥 , 德伟 , 等. 基于生成对抗网络的微地震数据去噪方法. 实验室研究与探索, 2021, 40 (5): 18- 21.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5315 KB)

Accesses

Citation

Detail

Sections
Recommended

/