Inverse Q filtering high-resolution processing method based on unsupervised learning

LaiDong HU, Bin LIU, XuGuang DONG, BoCheng QIN, XiaoYang WANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1835-1846.

PDF(7895 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7895 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1835-1846. DOI: 10.6038/pg2025II0234

Inverse Q filtering high-resolution processing method based on unsupervised learning

Author information +
History +

Abstract

Affected by near-surface absorption, seismic wave energy attenuation and phase distortion lead to a significant reduction in the resolution and signal-to-noise ratio of seismic data. Conventional inverse Q filtering methods have problems such as unstable amplitude compensation and difficult parameter selection. To address these problems, a new unsupervised learning inverse Q filtering high-resolution processing method is proposed. This method integrates the Deep Learning (DL) framework and the seismic wave absorption attenuation theory based on unconditional numerical stability, and provides a DL inverse Q filtering strategy that does not require training labels and avoids numerical instability in amplitude compensation. First, a DL network is constructed, the data to be compensated is input into the network, and the network output is used as the compensated result. Then, the predicted compensation result is sent to the attenuation kernel matrix constructed by the near-surface Q model for forward attenuation. Next, the error between the attenuated seismic data obtained by forward modeling and the original data to be compensated is used to reversely adjust the network parameters, and the error is minimized by iteratively optimizing the network parameters, and the final compensation result is output. In the entire training network prediction process, no data labels are required, and the effect of unsupervised autonomous learning is achieved. The application results of theoretical model data and actual pre-stack seismic data show that compared with the conventional inverse Q filtering method, the unsupervised method can effectively compensate the amplitude energy of seismic signals and has high numerical stability. This method improves the resolution and signal-to-noise ratio of seismic records.

Key words

Unsupervised learning / Inverse Q filtering / Absorption attenuation / Attenuation kernel matrix

Cite this article

Download Citations
LaiDong HU , Bin LIU , XuGuang DONG , et al . Inverse Q filtering high-resolution processing method based on unsupervised learning[J]. Progress in Geophysics. 2025, 40(4): 1835-1846 https://doi.org/10.6038/pg2025II0234

References

Bickel S H , Natarajan R R . Plane-wave Q deconvolution. Geophysics, 1985, 50 (9): 1426- 1439.
Dong X T , Zhong T , Li Y . A deep-learning-based denoising method for multiarea surface seismic data. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (5): 925- 929.
Futterman W I . Dispersive body waves. Journal of Geophysical Research, 1962, 67 (13): 5279- 5291.
Gholami A . Projected Gabor deconvolution. Geophysics, 2016, 81 (2): V151- V157.
Hale D . Q and adaptive prediction error filters. Stanford Exploration Project Report, 1981, 28: 209- 231.
Han S , Liu Y J , Li Y B , et al. First arrival traveltime picking through 3-D U-net. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8016405
Hargreaves N D , Calvert A J . Inverse Q filtering by Fourier transform. Geophysics, 1991, 56 (4): 519- 527.
Jing Y , Tian R F , Guo S J . Research on frequency attenuation gradient method based on LMSST time frequency analysis. Progress in Geophysics, 2024, 39 (2): 689- 703.
Li Q Q , Fu L Y , Wei W , et al. Stable and high-efficiency attenuation compensation in reverse-time migration using wavefield decomposition algorithm. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (10): 1615- 1619.
Li X Y , Shen J X , Yu S Y , et al. Stability control method of inverse Q filtering in frequency domain. Progress in Geophysics, 2016, 31 (4): 1608- 1613.
Li Y , Zhang G L , Duan J , et al. Extended stable factor method for the inverse Q-filter. Geophysics, 2020, 85 (3): T155- T163.
Liu C , Feng X , Zhang J . A stable inverse Q filtering using the iterative filtering method. Oil Geophysical Prospecting, 2013, 48 (6): 890- 895.
Liu X Y , Li B , Li J Y , et al. Semi-supervised deep autoencoder for seismic facies classification. Geophysical Prospecting, 2021, 69 (6): 1295- 1315.
Margrave G F , Lamoureux M P , Henley D C . Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data. Geophysics, 2011, 76 (3): W15- W30.
Min F , Wang L R , Pan S L , et al. Fast convex set projection with deep prior for seismic interpolation. Expert Systems with Applications, 2023a, 213: 119256
Min F , Wang L R , Pan S L , et al. D2UNet: Dual decoder U-net for seismic image super-resolution reconstruction. IEEE Transactions on Geoscience and Remote Sensing, 2023b, 61: 5906913
Pan S L , Chen K , Chen J Y , et al. A partial convolution-based deep-learning network for seismic data regularization. Computers & Geosciences, 2020, 145: 104609
Qin Z Y , Pan S L , Chen J Y , et al. Method of automatically detecting the abnormal first arrivals using delay time (December 2020). IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4504908
Tian G , Zhao Y , Zhang W , et al. The inverse Q filtering method based on a novel variable stability factor. Geophysics, 2023, 88 (3): V207- V214.
Tian G , Zhao Y . Improved generalized stable inverse Q filtering method. Progress in Geophysics, 2023, 38 (1): 285- 297.
Tim S, Elena K, Sarah S. 2019. Amplitude friendly inverse Q filtering. //SEG Technical Program Expanded Abstracts. San Antonio, Texas, USA: SEG, 625-629.
Wang F , Yang B , Wang Y Q , et al. Learning from noisy data: An unsupervised random denoising method for seismic data using model-based deep learning. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5913314
Wang Y H . A stable and efficient approach of inverse Q filtering. Geophysics, 2002, 67 (2): 657- 663.
Wu X M , Liang L M , Shi Y Z , et al. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 2019, 84 (3): IM35- IM45.
Wu Y H , Pan S L , Chen J Y , et al. A surface-wave inversion method based on FHLV loss function in LSTM. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3007605
Yao Z X , Gao X , Li W X . The forward Q method for compensating attenuation and frequency dispersion used in the seismic profile of depth domain. Chinese J. Geophys., 2003, 46 (2): 229- 233.
Yu D , He Z J , Sun Y , et al. A comparison of the inverse Q filtering methods based on wavefield continuation. Geophysical and Geochemical Exploration, 2018, 42 (2): 331- 338.
Yu Y C , Yao F C , Sun X P , et al. Research on quality factor estimation and seismic wave absorption compensation. Science Technology and Engineering, 2014, 14 (28): 9- 16.
Zhang G L , He Z H , Wang X M , et al. Seismic wave dispersion effects and inverse Q-filter phase compensation. Chinese J. Geophys., 2014, 57 (5): 1655- 1663.
Zhang G L , Lin J , Wang X M , et al. A self-adaptive approach for inverse Q-filtering. Chinese J. Geophys., 2015, 58 (7): 2525- 2535.
Zhang H , Han J G , Li Z X , et al. Extracting Q anomalies from marine reflection seismic data using deep learning. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7501205
Zhang J , Li J Y , Cheng W L . Simultaneous Interval-Q estimation and attenuation compensation based on fusion deep neural network. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5921009
Zhao Y , Mao N B , Ren Z M . A stable and efficient approach of Q reverse time migration. Geophysics, 2018, 83 (6): S557- S567.
Zhao Y , Mao N B , Chen X . Self-adaptive gain-limit inverse Q filtering method based on SNR in time-frequency domain. Lithologic Reservoirs, 2021, 33 (4): 85- 92.
Zhou C , Wang S D , Wang Z X , et al. Absorption attenuation compensation using an end-to-end deep neural network. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5917709
, 仁飞 , 姝君 . 基于LMSST时频分析的频率衰减梯度方法研究. 地球物理学进展, 2024, 39 (2): 689- 703.
雪英 , 加雪 , 生云 , 等. 频域反Q滤波稳定性控制方法. 地球物理学进展, 2016, 31 (4): 1608- 1613.
, , . 稳定的迭代法反Q滤波. 石油地球物理勘探, 2013, 48 (6): 890- 895.
广 , . 一种改进的广义稳定反Q滤波方法. 地球物理学进展, 2023, 38 (1): 285- 297.
振兴 , , 维新 . 用于深度域地震剖面衰减与频散补偿的反Q滤波方法. 地球物理学报, 2003, 46 (2): 229- 233.
永才 , 逢昌 , 夕平 , 等. 品质因子估计与地震波衰减补偿研究. 科学技术与工程, 2014, 14 (28): 9- 16.
, 志军 , , 等. 基于波场延拓的反Q滤波方法比较. 物探与化探, 2018, 42 (2): 331- 338.
固澜 , 振华 , 熙明 , 等. 地震波频散效应与反Q滤波相位补偿. 地球物理学报, 2014, 57 (5): 1655- 1663.
固澜 , , 熙明 , 等. 一种自适应增益限的反Q滤波. 地球物理学报, 2015, 58 (7): 2525- 2535.
, 宁波 , . 基于时频域信噪比的自适应增益限反Q滤波方法. 岩性油气藏, 2021, 33 (4): 85- 92.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(7895 KB)

Accesses

Citation

Detail

Sections
Recommended

/