Well log evaluation methods of deep source rocks: the Jurassic Yangxia Formation in Kuqa depression

Liang ZHANG, ZongLi XIA, Bin WANG, Ling LI, Fei ZHAO, YouPeng ZHANG, Jin LAI, GuiWen WANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1563-1576.

PDF(9948 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9948 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1563-1576. DOI: 10.6038/pg2025II0240

Well log evaluation methods of deep source rocks: the Jurassic Yangxia Formation in Kuqa depression

Author information +
History +

Abstract

Well logging identification and quantitative characterization of source rocks are of great significance to hydrocarbon reserves evaluation. There are three types of source rocks in the Jurassic Yangxia Formation of Kuqa Depression: coal measure, dark mudstone and carboniferous mudstone. However, due to the depth of burial (average greater than 4500 m), the source rocks are too mature and affected by deep buried ground stress, the traditional ΔlogR method is difficult to apply. Based on this comprehensive use of geochemical analysis and geophysical logging data, this paper first reveals the geological characteristics of the source rocks of the Jurassic Yangxia Formation, and realizes the qualitative identification of the source rocks of different lithologies through conventional logging crossplot. The results show that the overall maturity of source rocks of Yangxia Formation is high and the quality of source rocks is medium to good. The qualitative identification of source rocks can be realized by the intersection of curves such as GR, AC, DEN, CNC and AC, GR, RT, CNC, DEN curves that are sensitive to the response of the source rock are selected to establish a quantitative prediction model of TOC content by using multi-regression analysis methods and BP artificial intelligence method, and the quantitative evaluation of the single well source rock in the study area is realized. The results are in good agreement with the measured core data. The research results are of guiding significance for comprehensive logging evaluation of deep source rock quality in Kuqa Depression.

Key words

Source rock / Well log evaluation / TOC / Deep layer / Yangxia Formation / Kuqa depression

Cite this article

Download Citations
Liang ZHANG , ZongLi XIA , Bin WANG , et al . Well log evaluation methods of deep source rocks: the Jurassic Yangxia Formation in Kuqa depression[J]. Progress in Geophysics. 2025, 40(4): 1563-1576 https://doi.org/10.6038/pg2025II0240

References

Amosu A, Sun Y F. Identification of thermally mature total organic carbon-rich layers in shale formations using an effective machine-learning approach. Interpretation, 2021, 9(3): T735- T745.
Chen H F, Wang F Q, Wang M, et al. TOC evaluation using variable-coefficient ΔlogR model. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(4): 54- 64.
Du J M, Zhang X L, Zheng X, et al. The applicability of well logs prediction models of organic carbon content in source rocks of the tight oil: A case of the source rocks of lower section of N1 Formation in Qaidm Basin. Journal of Northwest University (Natural Science Edition), 2016, 46(2): 239- 245.
Du W F, Wang P, Liang M X, et al. Well logs response characteristics and quantitative prediction model of organic carbon content of hydrocarbon source rocks in coal-bearing strata measures. Journal of China Coal Society, 2016, 41(4): 954- 963.
Flower J G. Use of Sonic-Shear-Wave/Resistivity overlay as a Quick-Look method for identifying potential pay zones in the Ohio (Devonian) shale. Journal of Petroleum Technology, 1983, 35(3): 638- 642.
Gao Z Y, Wu Y P, Liu Z L, et al. Development model and significance of favorable lithofacies association of sandy braided river facies of the Cretaceous Bashijiqike Formation in Zhongqiu 1 well block, Kuqa Depression, Tarim Basin. Oil & Gas Geology, 2023, 44(5): 1141- 1158.
He C, Su A, Zhang M Z, et al. Optimal selection and application of prediction means for organic carbon content of source rocks based on logging data in Yanchang Formation, Ordos Basin. Natural Gas Geoscience, 2016, 27(4): 754- 764.
He D F, Zhou X Y, Yang H J, et al. Geological structure and its controls on giant oil and gas fields in Kuqa Depression, Tarim Basin: a clue from New Shot Seismic Data. Geotectonica et Metallogenia, 2009, 33(1): 19- 32.
Hu H T, Lu S F, Liu C, et al. Models for calculating organic carbon content from logging information: comparison and analysis. Acta Sedimentologica Sinica, 2011, 29(6): 1199- 1205.
Huang S, Liu W H, Dai H X, et al. Log evaluation on the TOC of continental source rocks based on variable coefficient ΔlgR model. Well Logging Technology, 2019, 43(5): 519- 524.
Huang X P, Yang Z L, Zhang Z H, et al. Logging inversion geochemical parameters of hydrocarbon source rocks: A case study of Jurassic lower Xinhe Formation in Xiaohu sub-sag, Yabulai Basin. Journal of China Coal Society, 2020, 45(S1): 415- 426.
Huang Z H, Williamson M A. Artificial neural network modeling as an aid to source rock characterization. Marine and Petroleum Geology, 1996, 13: 277- 290.
Huo Q L, Zeng H S, Fu L, et al. The advance of ΔlgR method and its application in Songliao Basin. Journal of Jilin University (Earth Science Edition), 2011, 41(2): 586- 591.
Iqbal O, Ahmad M, Kadir A A. Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: A case study of the Permian Roseneath and Murteree Shale Gas reservoirs, Cooper Basin, Australia. Journal of Natural Gas Science and Engineering, 2018, 58: 34- 58.
Jiang D X, Jiang Z L, Zhang H, et al. Well logging prediction models of TOC content in source rocks: a case of Wenchang Formation in Lufeng Sag. Lithologic Reservoirs, 2019, 31(6): 109- 117.
Jin Z J, Wang G P, Liu G X, et al. Research progress and key scientific issues of continental shale oil in China. Acta Petrolei Sinica, 2021, 42(7): 821- 835.
Lai J, Wang G W, Pang X J, et al. The past, present and future of well logging geology: To celebrate the publication of second edition of "Well Logging Geology". Geological Review, 2021, 67(6): 1804- 1828.
Lai J, Fan X C, Li Y H, et al. Well logging evaluation of seven kinds of relationships and three types of properties of Paleogene Funing Formation oil shales in Subei Basin. Geological Review, 2022, 68(2): 751- 768.
Lai J, Wang G W, Fan Q X, et al. Geophysical well-log evaluation in the era of unconventional hydrocarbon resources: A review on current status and prospects. Surveys in Geophysics, 2022, 43(3): 913- 957.
Lai J, Wang G W, Fan Q X, et al. Toward the scientific interpretation of geophysical well logs: typical misunderstandings and countermeasures. Surveys in Geophysics, 2023, 44(2): 463- 494.
Lai J, Li H B, Zhang M, et al. Advances in well logging geology in the era of unconventional hydrocarbon resources. Journal of Palaeogeography, 2023, 25(5): 1118- 1138.
Lai J, Zhao F, Xia Z L, et al. Well log prediction of total organic carbon: A comprehensive review. Earth-Science Reviews, 2024, 258: 104913
Lai J, Bai T Y, Su Y, et al. Researches progress in well log recognition and evaluation of source rocks. Geological Review, 2024a, 70(2): 721- 741.
Lai J, Xiao L, Bai T Y, et al. Interpretation and evaluation methods of image logs and their geological applications. Bulletin of Geological Science and Technology, 2024b, 43(3): 323- 340.
Lu Y X, Bao S J, Zhou Z, et al. Research progress of geophysical prediction methods for total organic carbon in high-thermal evolution shale. Progress in Geophysics, 2023, 38(1): 229- 241.
Meissner F F. Abnormal electric resistivity and fluid pressure in Bakken Formation, Williston basin, and its relation to petroleum generation, migration, and accumulation: ABSTRACT. AAPG Bulletin, 1976, 60: 1403- 1404.
Meyer B L, Nederlof M H. Identification of source rocks on wireline logs by Density/Resistivity and sonic transit time/resistivity Crossplots. AAPG Bulletin, 1984, 68(2): 121- 129.
Passey Q R, Creaney S, Kulla J B, et al. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 1990, 74(5): 1777- 1794.
Qi J F, Li Y, Wu C, et al. The interpretation models and discussion on the contractive structure deformation of Kuqa Depression, Tarim Basin. Geology in China, 2013, 40(1): 106- 120.
Qin J Q, Fu D L, Qian Y F, et al. Progress of geophysical methods for the evaluation of TOC of source rock. Geophysical Prospecting for Petroleum, 2018, 57(6): 803- 812.
Schmoker J W. Organic content of Devonian shale in western Appalachian basin. AAPG Bulletin, 1980, 64(12): 2156- 2165.
Song T, Zheng M, Huang F X, et al. Exploration progress and potential of oil and gas in deep-ultradeep clastic rocks of PetroChina. Marine Origin Petroleum Geology, 2024, 29(3): 225- 235.
Su Y, Lai J, Dang W L, et al. Pore structure characterization and reservoir quality prediction in deep and ultra-deep tight sandstones by integrating image and NMR logs. Journal of Asian Earth Sciences, 2024, 272: 106232
Su Y, Lai J, Zhao F, et al. Interpretation and evaluation methods of Litho-Scanner logging data and its geological application. Geological Review, 2024, 70(5): 1884- 1898.
Wang G W, Zhu Z Y, Zhu G Y. Logging identification and evaluation of Cambrian-Ordovician source rocks in syneclise of Tarim basin. Petroleum Exploration and Development, 2002, 29(4): 50- 52.
Wang X Y, Xie R H, Mao Z G, et al. Research on logging evaluation method of total organic carbon content of source rock based on ensemble learning. Progress in Geophysics, 2022, 37(2): 684- 694.
Yang T T, Shao D L, Cao G W, et al. Logging quantitative evaluation method for hydrocarbon source rock. Progress in Geophysics, 2018, 33(1): 285- 291.
Yuan C, Zhou C C, Hu S, et al. Summary on well logging evaluation method of total organic carbon content in formation. Progress in Geophysics, 2014, 29(6): 2831- 2837.
Yuan L, Wang Q, Yu B, et al. Well logging evaluation method research of source rock geochemical parameters in the tight gas. Progress in Geophysics, 2020, 35(1): 239- 249.
Yuan L, Zhang H N, Xin Y, et al. The comprehensive logging evaluation of "Three Qualities" of tight gas. Journal of Southwest Petroleum University (Science Technology & Edition), 2022, 44(2): 49- 64.
Zhang C L, Tao S Z, Bai B, et al. Source rock TOC content prediction based on the support vector machine model: An application in Ordos Basin. Natural Gas Geoscience, 2019, 30(5): 761- 768.
Zhang H, Lu S F, Li W H, et al. Application of ΔLogR technology and BP neural network in organic evaluation in the complex lithology tight stratum. Progress in Geophysics, 2017, 32(3): 1308- 1313.
Zhang H L, Shou J F, Cheng Z L, et al. Sedimentary characteristics and sandstone body distribution of the lower Jurassic in Kuqa Depression. Journal of Palaeogeography, 2002, 4(3): 47- 58.
Zhou Y, Wang C S, Lin W C, et al. Evaluation method and application for geochemical parameters of shale oil source rock. Well Logging Technology, 2022, 46(3): 334- 339.
Zhu G Y, Jin Q, Wang R. Identification methods for efficient source rocks. Journal of University of Petroleum, China, 2003, 27(2): 6- 10.
Zhu J W, Zhao G, Liu B, et al. Identification technology and it's application of well-logging about oil shale. Journal of Jilin University (Earth Science Edition), 2012, 42(2): 289- 295.
Zou C N, Tao S Z, Xue S H. Connotation of "Facies Control Theory" and its significance for exploration. Petroleum Exploration and Development, 2005, 32(6): 7- 12.
海峰, 凤启, , 等. 基于变系数ΔlogR技术的烃源岩TOC精细评价. 中国石油大学学报(自然科学版), 2017, 41(4): 54- 64.
江民, 小莉, , 等. 致密油烃源岩有机碳含量测井定量预测模型适用性分析——以柴达木盆地上干柴沟组下段烃源岩为例. 西北大学学报(自然科学版), 2016, 46(2): 239- 245.
文凤, , 明星, 等. 煤系烃源岩有机碳含量测井响应特征与定量预测模型. 煤炭学报, 2016, 41(4): 954- 963.
志勇, 永平, 兆龙, 等. 塔里木盆地库车坳陷中秋1井区白垩系巴什基奇克组砂质辫状河有利岩相组合发育模式与意义. 石油与天然气地质, 2023, 44(5): 1141- 1158.
, , 明震, 等. 鄂尔多斯盆地延长组烃源岩有机碳含量测井预测方法优选及应用. 天然气地球科学, 2016, 27(4): 754- 764.
登发, 新源, 海军, 等. 库车坳陷的地质结构及其对大油气田的控制作用. 大地构造与成矿学, 2009, 33(1): 19- 32.
慧婷, 双舫, , 等. 测井资料计算源岩有机碳含量模型对比及分析. 沉积学报, 2011, 29(6): 1199- 1205.
, 文华, 红霞, 等. 基于变系数Δlg R技术的陆相烃源岩总有机碳含量测井评价. 测井技术, 2019, 43(5): 519- 524.
小鹏, 占龙, 兆辉, 等. 烃源岩地化参数的测井反演——以雅布赖盆地小湖次凹侏罗系新河组下段为例. 煤炭学报, 2020, 45(S1): 415- 426.
秋立, 花森, , 等. ΔlgR测井源岩评价方法的改进及其在松辽盆地的应用. 吉林大学学报(地球科学版), 2011, 41(2): 586- 591.
德鑫, 正龙, , 等. 烃源岩总有机碳含量测井预测模型探讨: 以陆丰凹陷文昌组为例. 岩性油气藏, 2019, 31(6): 109- 117.
之钧, 冠平, 光祥, 等. 中国陆相页岩油研究进展与关键科学问题. 石油学报, 2021, 42(7): 821- 835.
, 贵文, 小娇, 等. 测井地质学前世、今生与未来——写在《测井地质学·第二版》出版之时. 地质论评, 2021, 67(6): 1804- 1828.
, 雪纯, 雨航, 等. 苏北盆地古近系阜宁组页岩七性关系与三品质测井评价. 地质论评, 2022, 68(2): 751- 768.
, 红斌, , 等. 非常规油气时代测井地质学研究进展. 古地理学报, 2023, 25(5): 1118- 1138.
, 天宇, , 等. 烃源岩测井识别与评价方法研究进展. 地质论评, 2024a, 70(2): 721- 741.
, , 天宇, 等. 成像测井解释评价方法及其地质应用. 地质科技通报, 2024b, 43(3): 323- 340.
妍欣, 书景, , 等. 高热演化页岩总有机碳地球物理预测方法研究进展. 地球物理学进展, 2023, 38(1): 229- 241.
家福, , , 等. 塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论. 中国地质, 2013, 40(1): 106- 120.
建强, 德亮, 亚芳, 等. 烃源岩有机质丰度预测的地球物理研究进展. 石油物探, 2018, 57(6): 803- 812.
, , 福喜, 等. 中国石油深层-超深层碎屑岩油气勘探进展与潜力. 海相油气地质, 2024, 29(3): 225- 235.
, , , 等. 岩性扫描测井解释评价方法及其地质应用. 地质论评, 2024, 70(5): 1884- 1898.
贵文, 振宇, 广宇. 烃源岩测井识别与评价方法研究. 石油勘探与开发, 2002, 29(4): 50- 52.
宵宇, 然红, 治国, 等. 基于集成学习的烃源岩总有机碳含量测井评价方法研究. 地球物理学进展, 2022, 37(2): 684- 694.
涛涛, 大力, 光伟, 等. 烃源岩测井定量评价方法探讨. 地球物理学进展, 2018, 33(1): 285- 291.
, 灿灿, , 等. 地层有机碳含量测井评价方法综述. 地球物理学进展, 2014, 29(6): 2831- 2837.
, , , 等. 致密气藏烃源岩地化参数测井综合评价方法研究. 地球物理学进展, 2020, 35(1): 239- 249.
, 海宁, , 等. 致密气"三品质"测井综合评价方法研究. 西南石油大学学报(自然科学版), 2022, 44(2): 49- 64.
成龙, 士振, , 等. 基于支持向量机模型的烃源岩有机碳含量预测——以鄂尔多斯盆地为例. 天然气地球科学, 2019, 30(5): 761- 768.
惠良, 寿 建峰, 子料, 等. 库车坳陷下侏罗统沉积特征及砂体展布. 古地理学报, 2002, 4(3): 47- 58.
, 双舫, 文浩, 等. ΔLogR技术与BP神经网络在复杂岩性致密层有机质评价中的应用. 地球物理学进展, 2017, 32(3): 1308- 1313.
, 长胜, 伟川, 等. 页岩油烃源岩地化参数测井评价方法及应用. 测井技术, 2022, 46(3): 334- 339.
光有, , . 有效烃源岩的识别方法. 石油大学学报(自然科学版), 2003, 27(2): 6- 10.
建伟, , , 等. 油页岩测井识别技术及应用. 吉林大学学报(地球科学版), 2012, 42(2): 289- 295.
才能, 士振, 叔浩. "相控论"的内涵及其勘探意义. 石油勘探与开发, 2005, 32(6): 7- 12.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(9948 KB)

Accesses

Citation

Detail

Sections
Recommended

/