Classification of interlayer based on BA-Catboost algorithm: a case study of J zone in Longdong oilfield

LiRui JIN, JunLong ZHAO, Jing SUN, YuChen ZHANG, JiaXin CHEN, WenJie CUI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1800-1811.

PDF(6345 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6345 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1800-1811. DOI: 10.6038/pg2025II0242

Classification of interlayer based on BA-Catboost algorithm: a case study of J zone in Longdong oilfield

Author information +
History +

Abstract

Accurately identifying the interlayer in the reservoir is crucial for the fine characterization of the reservoir and the exploration of remaining oil potential. In order to better utilize logging data and improve the efficiency and accuracy of interlayer partitioning, this paper proposes a interlayer partitioning method based on the BA-Catboost algorithm. In the study, the general methods for identifying and dividing interlayer were compared and analyzed. In response to the difficulties of low efficiency and easy errors in manual division, the technical route of BA-Catboost algorithm was optimized and constructed. By using core logging and other data to identify interlayers and classify their types, ADASYN method was used to increase the sample size of interlayers, and high correlation logging curves such as GR, SP, and AC were selected as feature parameters. Based on the BA-Catboost algorithm, a classification model was trained and established, with model training and testing accuracies of 96.7% and 98.9%, respectively. Using a classification model to identify the feature fuzzy and difficult to divide interlayers, 62 groups of muddy interlayers, 20 groups of calcareous interlayers, and 59 groups of physical interlayers were identified. On this basis, the distribution characteristics of interlayer planes were studied, and it was found that interlayer planes were more developed in the Y2 and Y3 sub layers, showing a high frequency and density of interlayer distribution in the southeast region and a low density in the central and western regions on the plane. The use of this method to divide the interlayer makes up for the lack of understanding in previous production and development processes. Subsequently, by adjusting injection and production measures, using methods such as hole filling and increasing water injection volume, the production increase effect can be achieved. The research results show that the BA-Catboost algorithm has better performance than similar algorithms. The classification model established by this method has good training and testing effects, and is used for fine recognition and automatic classification of interlayer, improving recognition accuracy and efficiency. It can effectively guide production and development work and has application value in J area of Longdong oilfield.

Key words

Interlayer / Bat algorithm / Catboost algorithm / Logging / Longdong oilfield

Cite this article

Download Citations
LiRui JIN , JunLong ZHAO , Jing SUN , et al . Classification of interlayer based on BA-Catboost algorithm: a case study of J zone in Longdong oilfield[J]. Progress in Geophysics. 2025, 40(4): 1800-1811 https://doi.org/10.6038/pg2025II0242

References

Cao Q K , Gao Y W , Ren X Y . Research on multi-depot vehicle scheduling based on hybrid bat algorithm. Journal of Hebei University of Engineering (Social Science Edition), 2021, 38 (1): 1- 6.
Chen H. 2016. Identification and characteristics study of sandwich layer in section 1 of Shawan formation in spring 10 district[Master's thesis] (in Chinese). Chengdu: Southwest Petroleum University.
Chen X , Xu S Y , Li S M , et al. Identification of interlayers in braided river reservoir based on support vector machine and principal component analysis. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45 (4): 22- 31.
Chen Y , Jiao S X , Cheng C , et al. Semi-supervised interlayer identification method based on self-encoder. Special Oil and Gas Reservoirs, 2021, 28 (1): 86- 91.
Ju H , Cheng C , Su C . Application of Marr wavelet transform frequency division technology in intercalated stratum identification. Journal of Yangtze University (Natural Science Edition), 2022, 19 (3): 46- 56.
Li C . A new metaheuristic bat-inspired algorithm. Computer Knowledge and Technology, 2010, 6 (23): 6569- 6572.
Li H , Liu S L , Chai G Q , et al. Logging geologic analysis method based on core calibration. Progress in Geophysics, 2016, 31 (1): 225- 231.
Li X Z , Zhang J Q , Hu H , et al. Risk level prediction model of heavy metal contaminated sites based on CatBoost. Journal of Green Science and Technology, 2022, 24 (24): 140- 145. 140-145, 151
Ma X J , Song Y Q , Chang B S , et al. Application research of P2P default prediction model based on CatBoost algorithm. Statistics and Information Forum, 2020, 35 (7): 9- 17.
Miao F S , Li Y , Gao C , et al. Diabetes prediction method based on CatBoost algorithm. Computer Systems & Applications, 2019, 28 (9): 215- 218.
Pu W F , Jin X , Tang X D , et al. Prediction model of water breakthrough patterns of low-permeability bottom water reservoirs based on BP neural network. Xinjiang Oil and Gas, 2024, 21 (2): 37- 47.
Shen N X , Gu W J , Li Z W , et al. Simulation of color correction model based on SSA-CatBoost. Computer Simulation, 2024, 41 (4): 219- 223. 219-223, 228
Si Y , Cai M J , Zhang J L , et al. Quantitative identification method of reservoir flow barriers based on self-organizing neural network and K-nearest neighbor algorithm. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47 (4): 35- 47.
Wang Y L. 2023. Study on three-dimensional architecture modeling of shallow-water delta and beach-bar in Es2 formation in Shengtuo oilfield[Master's thesis] (in Chinese). Beijing: China University of Petroleum (Beijing).
Xin Z G , Feng W G , Guo S B , et al. A method for automatic identification of interbed. Xinjiang Petroleum Geology, 2010, 31 (3): 307- 310.
Xu X S. 2020. Prediction model of personal customer default rate of financial institution using ensemble learning algorithm[Master's thesis] (in Chinese). Nanjing: Southeast University.
Yang X S. 2010. A new metaheuristic bat-inspired algorithm. //González J R, Pelta D A, Cruz C, et al eds. Nature Inspired Cooperative Strategies for Optimization. Berlin, Heidelberg: Springer, 65-74.
Yu Y C , Song X M , Lin M J , et al. Characteristics and development strategies of interlayers in the lower member of Mishrif Formation in H oilfield, Iraq. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47 (2): 1- 12.
Zhang C Y , Chen S J , Zhu X C , et al. Classification and characteristics of source-reservoir interlayer and its controlling effect on oil-gas enrichment in continental tight reservoir. Acta Petrolei Sinica, 2024, 45 (2): 358- 373.
Zhang J , Zhang L H , Hu S Y . The genesis and characteristics and identification of intercalations in reservoir of clastic rock. Petroleum Geology & Oilfield Development in Daqing, 2003, 22 (4): 1- 3.
Zhang J J , Zhong X , Cao Y F , et al. Study on identification and distribution characteristics of interlayer in Sa Ⅱ formation in the first area of Northeast of Lamadian oilfield. Journal of Gansu Sciences, 2023, 35 (6): 14- 21.
Zheng Z C. 2021. Research and application of recognition algorithm of interlayer in reservoir based on convolution neural network[Master's thesis]. Xi'an: Xi'an University of Petroleum.
Zhou G W , Tan C Q , Zheng X W , et al. Research on recognition of barrier/interbed via logging in H oilfield. Geophysical Prospecting for Petroleum, 2006, 45 (5): 542- 545.
Zhu J M , Da L Y , Gao H L , et al. Identification of interlayers in sandy braided river reservoirs under less well conditions: A case study of LD2X oilfield, Bohai, China. Fault-Block Oil and Gas Field, 2020, 27 (6): 739- 744.
庆奎 , 亚伟 , 向阳 . 基于混合蝙蝠算法的多车场车辆调度研究. 河北工程大学学报(社会科学版), 2021, 38 (1): 1- 6.
陈辉. 2016. 春10区沙湾组沙一段隔夹层识别及特征研究[硕士论文]. 成都: 西南石油大学.
, 守余 , 顺明 , 等. 基于支持向量机和主成分分析的辫状河储层夹层识别. 中国石油大学学报(自然科学版), 2021, 45 (4): 22- 31.
, 世祥 , , 等. 基于自编码器的半监督隔夹层识别方法. 特种油气藏, 2021, 28 (1): 86- 91.
, , . Marr小波变换分频技术在隔夹层识别中的应用. 长江大学学报(自然科学版), 2022, 19 (3): 46- 56.
. 新型元启发式蝙蝠算法. 电脑知识与技术, 2010, 6 (23): 6569- 6572.
, 双莲 , 公权 , 等. 基于岩心刻度的测井地质分析方法. 地球物理学进展, 2016, 31 (1): 225- 231.
心治 , 健钦 , , 等. 基于CatBoost的重金属污染场地风险等级预测模型. 绿色科技, 2022, 24 (24): 140- 145. 140-145, 151
晓君 , 嫣琦 , 百舒 , 等. 基于CatBoost算法的P2P违约预测模型应用研究. 统计与信息论坛, 2020, 35 (7): 9- 17.
丰顺 , , , 等. 基于CatBoost算法的糖尿病预测方法. 计算机系统应用, 2019, 28 (9): 215- 218.
万芬 , , 晓东 , 等. 基于BP神经网络的低渗透底水油藏油井见水模式预测模型. 新疆石油天然气, 2024, 21 (2): 37- 47.
楠翔 , 文娟 , 志文 , 等. 基于SSA-CatBoost的颜色校正模型仿真. 计算机仿真, 2024, 41 (4): 219- 223. 219-223, 228
, 明俊 , 家良 , 等. 基于自组织神经网络及K最近邻算法的储层渗流屏障定量识别方法. 中国石油大学学报(自然科学版), 2023, 47 (4): 35- 47.
王云龙. 2023. 胜坨油田沙二段浅水三角洲-滩坝体系三维构型建模研究[硕士论文]. 北京: 中国石油大学(北京).
治国 , 伟光 , 士博 , 等. 夹层自动识别方法. 新疆石油地质, 2010, 31 (3): 307- 310.
许小松. 2020. 基于集成学习算法的金融机构个人客户违约预测[硕士论文]. 南京: 东南大学.
义常 , 新民 , 敏捷 , 等. 伊拉克H油田Mishrif组下段隔夹层特征及开发策略. 中国石油大学学报(自然科学版), 2023, 47 (2): 1- 12.
春雨 , 世加 , 星丞 , 等. 源-储间隔夹层的分类、特征及其对陆相致密储层油气富集的控制作用. 石油学报, 2024, 45 (2): 358- 373.
, 烈辉 , 书勇 . 陆相碎屑岩储层隔夹层成因、特征及其识别. 大庆石油地质与开发, 2003, 22 (4): 1- 3.
景军 , , 艳芳 , 等. 喇嘛甸油田北东一区萨Ⅱ组隔夹层识别及分布特征研究. 甘肃科学学报, 2023, 35 (6): 14- 21.
郑泽晨. 2021. 基于卷积神经网络的储层内夹层识别算法研究与应用[硕士论文]. 西安: 西安石油大学.
国文 , 成仟 , 小武 , 等. H油田隔夹层测井识别方法研究. 石油物探, 2006, 45 (5): 542- 545.
建敏 , 丽亚 , 红立 , 等. 海上稀井条件下砂质辫状河储层隔夹层识别——以渤海LD2X油田为例. 断块油气田, 2020, 27 (6): 739- 744.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(6345 KB)

Accesses

Citation

Detail

Sections
Recommended

/