Transceiver integrated coil and its buffer design for near-surface TEM instrument

Chao XU, Hao YIN, RuJun CHEN, ShaoHeng CHUN, RuiJie SHEN, FeiFei WANG, JianPing XIAO

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2334-2347.

PDF(6183 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6183 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2334-2347. DOI: 10.6038/pg2025II0257

Transceiver integrated coil and its buffer design for near-surface TEM instrument

Author information +
History +

Abstract

The Transient Electromagnetic Method (TEM) is a geophysical exploration technique with significant potential for widespread application. Its good adaptability to various terrains and capability for non-invasive detection have made it a mainstream technology in urban underground space surveys in recent years. To enable effective TEM exploration in spatially constrained areas such as urban underground spaces and tunnels, this paper addresses the issues associated with small loop devices, such as high mutual inductance and complex structural design, by designing a transceiver integrated small coil and a matching buffer circuit. Firstly, this paper models the transceiver integrated coil and analyzes it from three aspects: equivalent resistance, inductance, and capacitance. Solutions to these issues are then proposed. To address the resonance problem in the coil, a buffer circuit is designed. Finally, the performance of the coil and its matching buffer circuit is verified using both high and low transmission currents. Testing indicates that even with a transmission magnetic moment of 28.75 Am2, the coil's effective resistance, inductance, and capacitance remain very low, measuring 494 mΩ, 1.03 mH, and 260 pF, respectively. Moreover, the coil demonstrates impressive turn-off times, reaching 38 μs and 5 μs for transmission currents of 14 A and 1.2 A, respectively. When the coil is used in conjunction with the buffer module, the system effectively reduces the interference from the primary field response, thereby enhancing the secondary field information. Additionally, since the designed coil device integrates transmission and reception functions and is small in size, it is highly suitable for exploration in spatially constrained areas, significantly improving portability and exploration efficiency.

Key words

Transient electromagnetic method / Receiving coil / Transmitting coil / Analog buffer

Cite this article

Download Citations
Chao XU , Hao YIN , RuJun CHEN , et al . Transceiver integrated coil and its buffer design for near-surface TEM instrument[J]. Progress in Geophysics. 2025, 40(5): 2334-2347 https://doi.org/10.6038/pg2025II0257

References

Chen R J. 2023. Development zero flux coil in transient electromagnetic method and its application in shallow detection[Master's thesis] (in Chinese). Hefei: Anhui University of Science and Technology.
Fan T, Zhao Z, Wu H, et al. Research on inductance effect removing and curve offset for mine TEM with multi small loops. Journal of China Coal Society, 2014, 39(5): 932- 940.
Fu Z H, Wang H W, Wang Y, et al. Elimination of mutual inductance effect for small-loop transient electromagnetic devices. Geophysics, 2019, 84(3): E143- E154.
Hole M J, Appel L C. Stray capacitance of a two-layer air-cored inductor. IEE Proceedings-Circuits, Devices and Systems, 2005, 152(6): 565- 572.
Jin Z, Iacchetti M F, Smith A C, et al. 2020. Winding inductance estimations in air-cored resonant induction machines. //2020 IEEE Energy Conversion Congress and Exposition (ECCE). Detroit, MI, USA: IEEE, 5813-5820.
Kozhevnikov N O, Sharlov M V, Stefanenko S M. Turning off low and high currents in a transmitter loop used in the transient electromagnetic method. Geophysical Prospecting, 2020, 68(5): 1676- 1688.
Li W H, Liu B, Li S C, et al. Study on multi-resolution imaging method of urban underground space based on high performance transient electromagnetic source. Chinese Journal of Geophysics, 2020, 63(12): 4553- 4564.
Lin J, Wang L, Wang X G, et al. Research and development on the air-core coil sensor for mine transient electromagnetic exploration. Chinese Journal of Geophysics, 2016, 59(2): 721- 730.
Lin T T, Zhou K, Cao Y M, et al. A review of Air-Core coil sensors in surface geophysical exploration. Measurement, 2022, 188: 110554
Matsuura F, Futatsugi Y, Sato M, et al. Theoretical impedance calculation method for Air-Core coils. IEEJ Transactions on Electrical and Electronic Engineering, 2024, 19(7): 1132- 1139.
Peng L Y. 2016. Transient electromagnetic transmitting system design based on multi-turn and small coil[Master's thesis] (in Chinese). Changchun: Jilin University.
Qu H L. 2021. Research on inductor coil distributed capacitance modeling and its influence on inductance performance[Master's thesis] (in Chinese). Beijing: China University of Petroleum (Beijing).
Sorensen K I, Auken E. SkyTEM-a new high-resolution helicopter transient electromagnetic system. Exploration Geophysics, 2004, 35(3): 194- 202.
Tang H Z, Yang H Y, Lu G Y, et al. Small multi-turn coils based on transient electromagnetic method for coal mine detection. Journal of Applied Geophysics, 2019, 169: 165- 173.
Wang G J, Li X. 2018. Analysis of transient characteristics of transient electromagnetic signals in receiving coil. //37th Chinese Control Conference (in Chinese). Wuhan.
Wang H J. Characteristics of damping coefficient effect on transient electromagnetic signal. Chinese Journal of Geophysics, 2010, 53(2): 428- 434.
Wang H W. 2019. Research on transient electromagnetic small-loop detection technology[Ph. D. thesis] (in Chinese). Chongqing: Chongqing University.
Wang S J. 2023. Two thousand and twenty-three research on urban dragged transient electromagnetic broadband low noise sensing technology [Master's Thesis] (in Chinese). Changchun: Jilin University.
Xi Z Z, Long X, Zhou S, et al. Opposing coils transient electromagnetic method for shallow subsurface detection. Chinese Journal of Geophysics, 2016, 59(9): 3428- 3435.
Xie Y, Pan W L. Mutual inductance calculation method of arbitrary space positioned coils. Electric Machines and Control, 2016, 20(6): 63- 67. 63-67, 76
Xu W J, Shen J G, Shen Y J, et al. Study on transient electromagnetic detection method of foundation pit curtain leakage. Progress in Geophysics, 2023, 38(2): 900- 911.
Xue G Q, Li X, Di Q Y. The progress of TEM in theory and application. Progress in Geophysics, 2007, 22(4): 1195- 1200.
Xue G Q, Yu J C. New development of TEM research and application in coal mine exploration. Progress in Geophysics, 2017, 32(1): 319- 326.
Yang H Y, Yue J H, Liu Z X. Theoretical Study of Inductance Effect With Multi-axial Coils for TEM in Underground Mine. Journal of Jilin University (Earth Science Edition), 2006, 36(S1): 168- 171.
Ye Z J, Ye Y, Zhang C P. Transient electromagnetic effect of the underdamped center loop. Progress in Geophysics, 2019, 34(5): 2106- 2111.
Yu S B, Wei Y M, Zhang J L, et al. Noise optimization design of frequency-domain air-core sensor based on capacitor tuning technology. Sensors, 2019, 20(1): 194
Yu S B, Zhang J L, Liu M, et al. A dual-air-core coil sensor with wide bandwidth and large effective area in electromagnetic exploration system. IEEE Sensors Journal, 2022, 22(11): 10465- 10475.
Yun E J, Kim J W, Lee W G, et al. Analytical estimation of high-frequency properties of RF micro-inductors prepared by direct-write techniques. Journal of Electroceramics, 2009, 23(2): 103- 109.
Zhang D G, Wang M Z. Analysis and calculation of inductance coefficient of circular coil with rectangular section. College Physics, 2022, 41(7): 36- 38. 36-38, 76s
Zhang H, Cao J, Sun H. The analysis and research of transient electromagnetic configuration of small multi-turn coincident loop. Seismology and Geology, 2010, 32(1): 90- 97.
Zhang S T, Zhang H, Yang H Y, et al. A comparative study of transient electromagnetic devices of small multi-turn loop. Geophysical and Geochemical Exploration, 2013, 37(5): 843- 847.
陈人峻. 2023. 浅层瞬变电磁零磁通线圈的研制及应用研究[硕士论文]. 合肥: 安徽理工大学.
, , , 等. 矿井瞬变电磁多匝回线电感影响消除及曲线偏移研究. 煤炭学报, 2014, 39(5): 932- 940.
文翰, , 术才, 等. 基于高性能瞬变电磁辐射源的城市地下空间多分辨成像方法研究. 地球物理学报, 2020, 63(12): 4553- 4564.
, , 晓光, 等. 矿井瞬变电磁探测中空芯线圈传感器的研制. 地球物理学报, 2016, 59(2): 721- 730.
彭良玉. 2016. 基于多匝小线圈的瞬变电磁发射系统设计[硕士论文]. 长春: 吉林大学.
渠慧玲. 2021. 电感线圈分布电容建模及其对电感性能影响研究[硕士论文]. 北京: 中国石油大学(北京).
王广君, 李轩. 2018. 瞬变电磁信号在接收线圈中的过渡特征分析. //第37届中国控制会议. 武汉.
华军. 阻尼系数对瞬变电磁观测信号的影响特征. 地球物理学报, 2010, 53(2): 428- 434.
王浩文. 2019. 瞬变电磁小回线探测技术研究[博士论文]. 重庆: 重庆大学.
王圣捷. 2023. 城市拖曳式瞬变电磁宽频低噪声传感技术研究[硕士论文]. 长春: 吉林大学.
振铢, , , 等. 基于等值反磁通原理的浅层瞬变电磁法. 地球物理学报, 2016, 59(9): 3428- 3435.
, 伟玲. 任意空间位置线圈的互感计算方法. 电机与控制学报, 2016, 20(6): 63- 67. 63-67, 76
维骏, 建国, 永进, 等. 基坑帷幕渗漏瞬变电磁检测方法研究. 地球物理学进展, 2023, 38(2): 900- 911.
国强, , 青云. 瞬变电磁法理论与应用研究进展. 地球物理学进展, 2007, 22(4): 1195- 1200.
国强, 景邨. 瞬变电磁法在煤炭领域的研究与应用新进展. 地球物理学进展, 2017, 32(1): 319- 326.
海燕, 建华, 志新. 矿井瞬变电磁法多匝小回线装置电感效应的理论研究. 吉林大学学报(地球科学版), 2006, 36(S1): 168- 171.
子剑, , 成平. 欠阻尼中心回线瞬变电磁效应. 地球物理学进展, 2019, 34(5): 2106- 2111.
德根, 明珠. 矩形截面圆线圈电感系数的分析与计算. 大学物理, 2022, 41(7): 36- 38. 36-38, 76
, , . 瞬变电磁法多匝重叠小回线装置实验研究. 地震地质, 2010, 32(1): 90- 97.
淑婷, , 海燕, 等. 瞬变电磁法多匝小回线装置实验对比. 物探与化探, 2013, 37(5): 843- 847.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(6183 KB)

Accesses

Citation

Detail

Sections
Recommended

/