Logging curves completion based on singular spectrum analysis and graph attention networks

ZeFu LÜ, YangYang ZHONG, Pan WANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1788-1799.

PDF(6355 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6355 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1788-1799. DOI: 10.6038/pg2025II0264

Logging curves completion based on singular spectrum analysis and graph attention networks

Author information +
History +

Abstract

In actual logging operations, various factors such ascomplex wellbore environment, complex geological structures, and wellbore collapses can lead to the issue of missing logging curves, and the cost of remeasuring data is high. To address the issue of missing logging curves, this paper first employs Singular Spectrum Analysis (SSA) to decompose the original logging curves, utilizing the more correlated components for more efficient curve completion. Furthermore, a logging curves completion model based on graph attention network incorporating Multi-Head Attention Mechanism and Bidirectional Gated Recurrent Units (GAT-MABiGRU) is proposed. In the completion experiments for the RHOB and DT logging curves, results show that the GAT-MABiGRU model based on SSA outperforms Support Vector Regression (SVR), Multi-Layer Perceptron (MLP), Long Short-Term Memory Network (LSTM), and Temporal Convolutional Network (TCN) in terms of Root Mean Squard Error(RMSE), Mean Absolute Error(MAE), and coefficient of determination(R2). Ablation experiments and blind well experiments further verify the effectiveness of incorporating SSA and GAT modules in improving the model's prediction accuracy, providing a new method for logging data completion.

Key words

Logging curves completion / Graph attention network / BiGRU / Multi-head attention / Singular Spectrum Analysis (SSA)

Cite this article

Download Citations
ZeFu LÜ , YangYang ZHONG , Pan WANG. Logging curves completion based on singular spectrum analysis and graph attention networks[J]. Progress in Geophysics. 2025, 40(4): 1788-1799 https://doi.org/10.6038/pg2025II0264

References

Ali M , Jiang R , Ma H L , et al. Machine learning—A novel approach of well logs similarity based on synchronization measures to predict shear sonic logs. Journal of Petroleum Science and Engineering, 2021, 203: 108602
Cho K, van Merrienboer B, Gulcehre C, et al. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv: 1406.1078.
Fu G M , Yan J Y , Zhang K , et al. Current status and progress of lithology identification technology. Progress in Geophysics, 2017, 32 (1): 26- 40.
Henaff M, Bruna J, LeCun Y. 2015. Deep convolutional networks on graph-structured data. arXiv: 1506.05163, doi: 10.48550/arXiv.1506.05163.
Jiang C B , Zhang D X , Chen S F . Handling missing data in well-log curves with a gated graph neural network. Geophysics, 2023, 88 (1): D13- D30.
Kavianpour P , Kavianpour M , Jahani E , et al. A CNN-BILSTM model with attention mechanism for earthquake prediction. The Journal of Supercomputing, 2023, 79 (17): 19194- 19226.
Li N , Xu B S , Wu H L , et al. Application status and prospects of artificial intelligence in well logging and formation evaluation. Acta Petrolei Sinica, 2021, 42 (4): 508- 522.
Luo H. 2022. Research on named entity recognition method based on deep learning[Master's thesis] (in Chinese). Chongqing: Chongqing University of Technology.
Mahdy A , Zakaria W , Helmi A , et al. Machine learning approach for core permeability prediction from well logs in Sandstone Reservoir, Mediterranean Sea, Egypt. Journal of Applied Geophysics, 2024, 220: 105249
Mo W C. 2022. Research on air quality prediction based on deep learning[Master's thesis] (in Chinese). Shanghai: East China Normal University.
Mou Y H. 2023. Research and implementation of logging curve completion algorithm based on deep learning[Master's thesis] (in Chinese). Xi'an: Xi'an Shiyou University.
Pan S W , Wang Z Y , Zhang Y , et al. Lithology identification based on LSTM neural networks completing log and hybrid optimized XGBoost. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46 (3): 62- 71.
Rahmati M , Zargar G , Tanha A A . Predicting density log from well log using machine learning techniques and heuristic optimization algorithm: A comparative study. Petroleum Research, 2024, 9 (2): 176- 192.
Shi Y Q. 2023. Volcanic characteristics, eruptive environment and reservoir development model of Cretaceous Huoshiling Formation in southern Songliao Basin[Ph. D. thesis] (in Chinese). Changchun: Jilin University.
Sun X W , Lu T D , He X X , et al. Design and implementation of GNSS time series noise reduction software based on whale optimization algorithm variational modal decomposition singular spectrum analysis. Journal of East China University of Technology (Natural Science), 2023, 46 (5): 518- 524.
Tan Q Y , Ma P , Zhang H L , et al. Fault diagnosis for wind turbine gearbox based on graph attention networks. Acta Energiae Solaris Sinica, 2024, 45 (1): 265- 274.
Teng J Q , Qiu M , Yang M R , et al. Logging curve prediction method based on GRU. Petroleum Geology and Recovery Efficiency, 2023, 30 (1): 93- 100.
Wang J T , Wen X T , He Y L , et al. Logging curve prediction based on a CNN-GRU neural network. Geophysical Prospecting for Petroleum, 2022, 61 (2): 276- 285.
Wang T T , Wang Z H , Li F , et al. Lithology identification in Optuna-BiGRU logging based on enhanced multi-head attention mechanism. Journal of Earth Sciences and Environment, 2024, 46 (1): 127- 142.
Xu Z H , Fan Y H , Wang W Y , et al. An improved arithmetic optimization algorithm and its application to the intelligent inversion of hydrogeological parameters. Journal of Basic Science and Engineering, 2024, 32 (3): 721- 739.
Zha W S , Qiao Q , Liu Z X , et al. A method for well log prediction using bidirectional long short-term memory based on correlation analysis. Journal of Hefei University of Technology (Natural Science), 2022, 45 (5): 700- 706.
Zhang J C , Deng J G , Tan Q , et al. Reconstruction of well logs based on XGBoost. Oil Geophysical Prospecting, 2022, 57 (3): 697- 705.
Zhou W , Zhao H H , Jiang Y F , et al. Logging data reconstruction based on cascade bidirectional long short-term memory neural network. Oil Geophysical Prospecting, 2022, 57 (6): 1473- 1480.
Zhou X , Cao J X , Wang X J , et al. Acoustic log reconstruction based on bidirectional Gated Recurrent Unit (GRU)neural network. Progress in Geophysics, 2022, 37 (1): 357- 366.
光明 , 加永 , , 等. 岩性识别技术现状与进展. 地球物理学进展, 2017, 32 (1): 26- 40.
, 彬森 , 宏亮 , 等. 人工智能在测井地层评价中的应用现状及前景. 石油学报, 2021, 42 (4): 508- 522.
罗辉. 2022. 基于深度学习的命名实体识别方法研究[硕士论文]. 重庆: 重庆理工大学.
莫炜聪. 2022. 基于深度学习的空气质量预测研究[硕士论文]. 上海: 华东师范大学.
牟昱辉. 2023. 基于深度学习的测井曲线补全算法研究与实现[硕士论文]. 西安: 西安石油大学.
少伟 , 朝阳 , , 等. 基于长短期记忆神经网络补全测井曲线和混合优化XGBoost的岩性识别. 中国石油大学学报(自然科学版), 2022, 46 (3): 62- 71.
石云倩. 2023. 松辽盆地南部白垩系火石岭组火山岩特征与喷发就位环境及其储层发育模式[博士论文]. 长春: 吉林大学.
喜文 , 铁定 , 小星 , 等. 顾及鲸鱼变分模态奇异谱分析的GNSS时序降噪软件设计与实现. 东华理工大学学报(自然科学版), 2023, 46 (5): 518- 524.
启瑜 , , 宏立 , 等. 基于图注意力网络的风力发电机齿轮箱故障诊断. 太阳能学报, 2024, 45 (1): 265- 274.
建强 , , 明任 , 等. 基于门控循环单元神经网络的测井曲线预测方法. 油气地质与采收率, 2023, 30 (1): 93- 100.
锦涛 , 晓涛 , 易龙 , 等. 基于CNN-GRU神经网络的测井曲线预测方法. 石油物探, 2022, 61 (2): 276- 285.
婷婷 , 振豪 , , 等. 基于增强多头注意力机制的Optuna-BiGRU测井岩性识别. 地球科学与环境学报, 2024, 46 (1): 127- 142.
振浩 , 永辉 , 文扬 , 等. 一种改进的算术优化算法及其在水文地质参数智能反演中的应用. 应用基础与工程科学学报, 2024, 32 (3): 721- 739.
文舒 , , 子雄 , 等. 基于相关性分析的Bi-LSTM测井曲线预测方法. 合肥工业大学学报(自然科学版), 2022, 45 (5): 700- 706.
家臣 , 金根 , , 等. 基于XGBoost的测井曲线重构方法. 石油地球物理勘探, 2022, 57 (3): 697- 705.
, 海航 , 云凤 , 等. 基于串级双向长短时记忆神经网络的测井数据重构. 石油地球物理勘探, 2022, 57 (6): 1473- 1480.
, 俊兴 , 兴建 , 等. 基于双向门控循环单元神经网络的声波测井曲线重构技术. 地球物理学进展, 2022, 37 (1): 357- 366.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(6355 KB)

Accesses

Citation

Detail

Sections
Recommended

/