Research on the short-term prediction model of the ionospheric TEC based on WOA-LSTM

Shuang LUO, Jian CHEN, Tao ZHANG, XingWang ZHAO, Chao LIU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 417-431.

PDF(6725 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6725 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 417-431. DOI: 10.6038/pg2025II0270

Research on the short-term prediction model of the ionospheric TEC based on WOA-LSTM

Author information +
History +

Abstract

Accurate prediction of the ionospheric Total Electron Content (TEC) is of great significance for improving the accuracy of satellite navigation and positioning. To this end, a TEC short-term forecasting model that combines the Whale Optimisation Algorithm (WOA) with Long-Short Term Memory Networks (LSTM) is proposed in this study; The optimal fitness of WOA algorithm is obtained by LSTM model training, and the Optimal parameters of LSTM model are obtained by WOA algorithm optimization. Finally, combined with the TEC grid dot data provided by the Center for Orbit Determination in Europe (CODE), the proposed model is verified; the test results show that : in the geomagnetic calm state, the combined model is flat. The average correlation coefficient increased by 2.8%, 6.2% and 14.8% respectively compared with the LSTM model at low, medium and high latitudes; the average correlation coefficient of the combined model under geomagnetic active state increased by 6.6%, 9.2% and 7.9% respectively compared with the LSTM model in low, medium and high latitudes. And the prediction effect of the model is related to geomagnetic active state, season, solar activity level, etc. Under different geomagnetic active state, season and different solar activity level, the prediction effect of the combined model is better than that of a single LSTM model, which provides a reference for the practical application of the ionospheric TEC prediction model.

Key words

Ionosphere / Total Electron Content (TEC) / Whale Optimisation Algorithm (WOA) / Neural network / Short-term forecast

Cite this article

Download Citations
Shuang LUO , Jian CHEN , Tao ZHANG , et al . Research on the short-term prediction model of the ionospheric TEC based on WOA-LSTM[J]. Progress in Geophysics. 2025, 40(2): 417-431 https://doi.org/10.6038/pg2025II0270

References

Acharya R , Roy B , Sivaraman M R , et al. Prediction of ionospheric total electron content using adaptive neural network with in-situ learning algorithm. Advances in Space Research, 2011, 47 (1): 115- 123.
Ban P P , Guo L X , Zhao Z W , et al. A regional ionospheric storm forecasting method using a deep learning algorithm: LSTM. Space Weather, 2023, 21 (3): e2022SW003061
Bent R B, Llewellyn S K, Nesterczuk G, et al. 1975. The development of a highly-successful worldwide empirical ionospheric model and its use in certain aspects of space communications and worldwide total electron content investigations. //Goodman J M ed. Effect of the Ionosphere on Space Systems and Communications. Springfield, VA, USA: National Technical Information Service, 13-28.
Bilitza D , Altadill D , Zhang Y L , et al. The international reference ionosphere 2012—a model of international collaboration. Journal of Space Weather and Space Climate, 2014, 4: A07
Cesaroni C , Spogli L , Aragon-Angel A , et al. Neural network based model for global Total Electron Content forecasting. Journal of Space Weather and Space Climate, 2020, 10: 11
Dai C L, Ping J S. 2009. Modeling and prediction of TEC in China region for satellite navigation. //2009 15th Asia-Pacific Conference on Communications. Shanghai, China: IEEE, 310-313, doi: 10.1109/APCC.2009.5375628.
Huang W X , Zhu F Y , Zhai D L , et al. Comparative analysis of BP neural network and ARMA model in short-term prediction of mid-latitude TEC. Journal of Geodesy and Geodynamics, 2021, 41 (3): 262- 267.
Huang Z , Yuan H . Ionospheric single-station TEC short-term forecast using RBF neural network. Radio Science, 2014, 49 (4): 283- 292.
Jeong S H , Lee W K , Kil H , et al. Deep learning-based regional ionospheric total electron content prediction—Long Short-Term Memory (LSTM) and convolutional LSTM approach. Space Weather, 2024, 22 (1): e2023SW003763
Klobuchar J . Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23 (3): 325- 331.
Li T , Zheng D Y , Yuan P F , et al. Comparative analysis of TEC in GNss ionospheric tomography based on carrier phase smoothing pseudo-distance and precise single point positioning. Progress in Geophysics, 2024, 39 (2): 460- 470.
Li W , Wu X Q . An ionospheric total electron content model with a storm option over japan based on a multi-layer perceptron neural network. Atmosphere, 2023, 14 (4): 634
Lu J H , Wang B , Hu W S . Improved prediction model of ionospheric TEC by BP neural network. Journal of Geomatics Science and Technology, 2017, 34 (1): 1- 4.
Mandrikova O V , Fetisova N V , Al-Kasasbeh R T , et al. Ionospheric parameter modelling and anomaly discovery by combining the wavelet transform with autoregressive models. Annals of Geophysics, 2015, 58 (5): A0550
Qiu F Q , Pan X , Luo X M , et al. Global ionospheric TEC prediction model integrated with semiparametric kernel estimation and autoregressive compensation. Chinese J. Geophys., 2021, 64 (9): 3021- 3029.
Song B H . Accuracy evaluation of ionospheric prediction based on BP neural network model. GNSS World of China, 2023, 48 (5): 79- 82. 79-82, 102
Tang J , Gao X . Prediction models of ionospheric TEC by Elman neural network with Bayesian regularization. Journal of Geodesy and Geodynamics, 2020, 40 (8): 799- 805.
Tang J , Xu L , Wu X Q , et al. A short-term forecasting method for ionospheric TEC combining local attention mechanism and LSTM model. IEEE Geoscience and Remote Sensing Letters, 2024a, 21: 1001305
Tang J , Liu C , Yang D P , et al. Prediction of ionospheric TEC using a GRU mechanism method. Advances in Space Research, 2024b, 74 (1): 260- 270.
Wang X J , Bian S F , Li Z S , et al. Prediction of global ionospheric TEC using the semiparametric kernel estimation method. Chinese J. Geophys., 2020, 63 (4): 1271- 1281.
Wen Z C , Li S H , Li L H , et al. Ionospheric TEC prediction using Long Short-Term Memory deep learning network. Astrophysics and Space Science, 2021, 366 (1): 3
Xiong B , Li X L , Wang Y Q , et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network. Chinese J. Geophys., 2022, 65 (7): 2365- 2377.
Yao Y B , Gao X . Research progress and prospect of monitoring ionosphere by GNSS technique. Geomatics and Information Science of Wuhan University, 2022, 47 (10): 1728- 1739.
Zhang N N , Tang S Y , Huang Z . Short-term regional ionospheric TEC forecast using a hybrid deep learning neural network. Advances in Space Research, 2024, 73 (7): 3772- 3781.
文喜 , 芙英 , 笃林 , 等. BP神经网络和ARMA模型在中纬度TEC短期预测中的对比分析. 大地测量与地球动力学, 2021, 41 (3): 262- 267.
, 敦勇 , 鹏飞 , 等. 基于载波相位平滑伪距与精密单点定位获取的TEC在GNSS电离层层析中的对比分析. 地球物理学进展, 2024, 39 (2): 460- 470.
建华 , , 伍生 . 利用BP神经网络改进电离层短期预报模型. 测绘科学技术学报, 2017, 34 (1): 1- 4.
封钦 , , 小敏 , 等. 综合半参数核估计和自回归补偿的全球电离层总电子含量预报模型. 地球物理学报, 2021, 64 (9): 3021- 3029.
秉红 . BP神经网络模型的电离层预报精度评估. 全球定位系统, 2023, 48 (5): 79- 82. 79-82, 102
, . 贝叶斯正则化的Elman神经网络电离层TEC预报模型. 大地测量与地球动力学, 2020, 40 (8): 799- 805.
喜江 , 少锋 , 子申 , 等. 利用半参数核估计法预报全球电离层总电子含量. 地球物理学报, 2020, 63 (04): 1271- 1281.
, 肖霖 , 宇晴 , 等. 基于长短时记忆神经网络的中国地区电离层TEC预测. 地球物理学报, 2022, 65 (7): 2365- 2377.
宜斌 , . GNSS电离层监测研究进展与展望. 武汉大学学报(信息科学版), 2022, 47 (10): 1728- 1739.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(6725 KB)

Accesses

Citation

Detail

Sections
Recommended

/