Fast forward of two-dimensional airborne transient electromagnetic based on deep learning

QianWei ZHANG, Jie XIONG, MengJiao YUAN, ChenRui ZENG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1861-1872.

PDF(13723 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(13723 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1861-1872. DOI: 10.6038/pg2025II0273

Fast forward of two-dimensional airborne transient electromagnetic based on deep learning

Author information +
History +

Abstract

The airborne transient electromagnetic method is an important electromagnetic exploration technology, which obtains the information about the electrical structure of the earth through inversion.But due to the slow progress of the forward, the inversion will consume a significant amount of time.Aiming at the problem of long computation time of traditional forward method, this paper proposes a deep learning-based fast forward method for airborne transient electromagnetic.The method first uses the traditional finite volume method to calculate the induced electromotive force of a large number of different ground resistivity models to form a training dataset; then it designs a ResNet-UNet deep neural network; then it trains the network with the training dataset; finally, it inputs the ground resistivity model into the trained neural network to obtain the forward results.In order to verify the accuracy and efficiency of the method, the forward results of the ResNet-UNet deep neural network and the traditional finite volume method are compared.The experimental results show that the average relative errors of the entire validation set is less than 1.2%, with 87% of the average relative errors falling within the range of 0.1% to 0.3%, and the speed of deep neural network forward is about 2934 times higher than that of the traditional finite volume method, which significantly improves the forward efficiency of the airborne transient electromagnetic.The method is capable of fast forward of airborne transient electromagnetic, which can be put into the existing inversion framework to accelerate the inversion speed of large datasets.

Key words

Deep learning / Airborne transient electromagnetic / Forward / Deep neural network

Cite this article

Download Citations
QianWei ZHANG , Jie XIONG , MengJiao YUAN , et al. Fast forward of two-dimensional airborne transient electromagnetic based on deep learning[J]. Progress in Geophysics. 2025, 40(4): 1861-1872 https://doi.org/10.6038/pg2025II0273

References

Bai P , Vignoli G , Viezzoli A , et al. (Quasi-)Real-time inversion of airborne time-domain electromagnetic data via artificial neural network. Remote Sens., 2020, 12 (20): 3440
Guan S , Khan A A , Sikdar S , et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (2): 568- 576.
Haber E, Ascher U, Oldenburg D W. 2002.3D forward modelling of time domain electromagnetic data. //72nd Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 641-644, doi: 10.1190/1.1817334.
Heagy L J , Cockett R , Kang S , et al. A framework for simulation and inversion in electromagnetics. Computers & Geosciences, 2017, 107: 1- 19.
Li J F , Liu Y H , Yin C C , et al. Fast imaging of time-domain airborne EM data using deep learning technology. Geophysics, 2020, 85 (5): E163- E170.
Li S P. 2023. Research on airborne electromagnetic inversion method based on deep learning [Master's thesis](in Chinese). Jingzhou: Yangtze University.
Li W W , Gong R B , Zhou X G , et al. UNet++: a deep-neural-network-based seismic arrival time picking method. Progress in Geophysics, 2021, 36 (1): 187- 194.
Noh K , Yoon D , Byun J . Imaging subsurface resistivity structure from airborne electromagnetic induction data using deep neural network. Exploration Geophysics, 2020, 51 (2): 214- 220.
Oristaglio M L , Hohmann G W . Diffusion of electromagnetic fields into a two-dimensional earth: a finite-difference approach. Geophysics, 1984, 49 (7): 870- 894.
Peng Z , Xu H Q . Post-stack seismic impedance inversion method based on TransUNet neural network. Progress in Geophysics, 2024, 39 (2): 704- 715.
Ronneberger O, Fischer P, Brox T. 2015. U-net: convolutional networks for biomedical image segmentation. //Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 234-241.
Schwarzbach C , Haber E . Finite element based inversion for time-harmonic electromagnetic problems. Geophysical Journal International, 2013, 193 (2): 615- 634.
Sharma H, Zhang Q J. 2005. Transient electromagnetic modeling using recurrent neural networks. //Proceedings of the IEEE MTT-S International Microwave Symposium Digest. Long Beach: IEEE, 1597-1600.
Weng Y , Zhou T B , Li Y J , et al. NAS-Unet: neural architecture search for medical image segmentation. IEEE Access, 2019, 7: 44247- 44257.
Wu F B , Fan M N , Liu W Y , et al. A time domain electromagnetic forward modeling method based on LSTM neural network. Journal of Northwest University (Natural Science Edition), 2021, 51 (3): 485- 490.
Wu S H , Huang Q H , Zhao L . Convolutional neural network inversion of airborne transient electromagnetic data. Geophysical Prospecting, 2021, 69 (8-9): 1761- 1772.
Xiong Z H . Electromagnetic modeling of 3-D structures by the method of system iteration using integral equations. Geophysics, 1992, 57 (12): 1556- 1561.
Xu F, Fu S L. 2018. Modeling EM problem with deep neural networks. //Proceedings of 2018 IEEE International Conference on Computational Electromagnetics. Chengdu: IEEE, 1-2.
Yang J , Jiang X T , Yang Y , et al. Three-dimensional finite volume forward modeling of semi-airborne transient electromagnetic source with long grounded conductor. Progress in Geophysics, 2022, 37 (5): 2072- 2078.
Yin C C , Zhang B , Liu Y H , et al. Review on airborne EM technology and developments. Chinese Journal of Geophysics, 2015, 58 (8): 2637- 2653.
Zhang S. 2023. Research on airborne electromagnetic detection imaging method based on deep learning [Master's thesis](in Chinese). Chengdu: University of Electronic Science and Technology of China.
Zhao Y , Xu F , Li X . Review on time-domain AEM system and applied potential. Progress in Geophysics, 2017, 32 (6): 2709- 2716.
李思平. 2023. 基于深度学习的航空电磁反演方法研究[硕士论文]. 荆州: 长江大学.
薇薇 , 仁彬 , 相广 , 等. 基于深度学习UNet++网络的初至波拾取方法. 地球物理学进展, 2021, 36 (1): 187- 194.
, 辉群 . 基于TransUNet神经网络的叠后地震波阻抗反演方法. 地球物理学进展, 2024, 39 (2): 704- 715.
风波 , 梦宁 , 文远 , 等. 一种基于LSTM神经网络建模的时域电磁正演方法. 西北大学学报(自然科学版), 2021, 51 (3): 485- 490.
, 晓腾 , , 等. 接地长导线源半航空瞬变电磁三维有限体积正演. 地球物理学进展, 2022, 37 (5): 2072- 2078.
长春 , , 云鹤 , 等. 航空电磁勘查技术发展现状及展望. 地球物理学报, 2015, 58 (8): 2637- 2653.
张松. 2023. 基于深度学习的航空电磁探测成像方法研究[硕士论文]. 成都: 电子科技大学.
, , . 时间域航空电磁系统回顾及其应用前景. 地球物理学进展, 2017, 32 (6): 2709- 2716.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(13723 KB)

Accesses

Citation

Detail

Sections
Recommended

/