Shear wave slowness prediction and application based on BP neural network optimized by AdaBoost algorithm

Jun ZHAO, HaoChen PEI, MouBing LUO, Yu PENG, Xin SHI, Xuan HE

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2085-2096.

PDF(8460 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8460 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2085-2096. DOI: 10.6038/pg2025II0277

Shear wave slowness prediction and application based on BP neural network optimized by AdaBoost algorithm

Author information +
History +

Abstract

Due to the lack of shear wave time difference data in the study area and the poor accuracy of conventional shear wave time difference prediction methods as a result of coal seam hole enlargement, the AdaBoost algorithm was introduced to optimize BP neural network method for predicting shear wave time difference. The prediction model of shear wave time difference is established by selecting the sensitive logging curves and setting the best model parameters to improve the prediction accuracy of shear wave time difference. Also, the prediction effect of shear wave time difference by multiple linear regression method, BP neural network method and AdaBoost optimized BP neural network algorithm is compared. The rock mechanical parameters and brittleness characteristics of coal seam are evaluated by the predicted shear wave time difference, and the types of coal structure are classified according to the relationship between the brittleness index and the Young's modulus. The results show that the BP neural network optimization model based on AdaBoost can predict the shear wave time difference efficiently, and the average relative error of the prediction results is 2.7%. The brittleness index is calculated by the predicted shear wave time difference and the coal structure type is identified, which is in good agreement with the core description. This approach can effectively improve the prediction accuracy of shear wave time difference and provide reliable data support for coal seam brittleness evaluation and coal structure identification.

Key words

AdaBoost / BP neural network / Shear wave time difference / Brittleness / Coal structure type

Cite this article

Download Citations
Jun ZHAO , HaoChen PEI , MouBing LUO , et al . Shear wave slowness prediction and application based on BP neural network optimized by AdaBoost algorithm[J]. Progress in Geophysics. 2025, 40(5): 2085-2096 https://doi.org/10.6038/pg2025II0277

References

Ai L , Zhou M S , Zhang J , et al. Quantitative identification of coal structure based on coal rock brittleness index by logging data. Lithologic Reservoirs, 2017, 29 (2): 139- 144.
Akinyemi O D , Elsaadany M , Siddiqui N A , et al. Machine learning application for prediction of sonic wave transit time-a case of Niger Delta Basin. Results in Engineering, 2023, 20: 101528.
Chen J Z , You J C , Wei J T , et al. Interpreting XGBoost predictions for shear-wave velocity using SHAP: insights into gas hydrate morphology and saturation. Fuel, 2024, 364: 131145.
Chen T F , Gao G , Wang P , et al. Prediction of shear wave velocity based on a hybrid network of two-dimensional convolutional neural network and gated recurrent unit. Geofluids, 2022, 2022: 9974157.
Esmaeilpour S, Ispas I. 2023. Data driven shear wave velocity prediction in a carbonate reservoir using conventional well logs. //57th U.S. Rock Mechanics/Geomechanics Symposium. Atlanta, Georgia, USA: OnePetro, doi: 10.56952/ARMA-2023-0180.
Feng M G , Yan W , Zhu L Q , et al. Method to predict total gas content in shale reservoir combing boosting-PLS algorithm and conventional logging data. Coal Technology, 2018, 37 (10): 23- 25.
Freund Y , Schapire R E . A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1997, 55 (1): 119- 139.
Jiang K , Wang S D , Hu Y J , et al. Lithology identification model by well logging based on Boosting Tree algorithm. Well Logging Technology, 2018, 42 (4): 395- 400.
Liu C , Qiao H Q , Guo Z Q , et al. Shale pore structure inversion and shear wave velocity prediction based on particle swarm optimization (pso) algorithm. Progress in Geophysics, 2017, 32 (2): 689- 695.
J , Xie R C , Zhou W , et al. Application of LM-BP neural network in simulation of shear wave velocity of shale formation. Journal of China University of Petroleum, 2017, 41 (3): 75- 83.
Mou D , Zhang L C , Xu C L . Comparison of three classical machine learning algorithms for lithology identification of volcanic rocks using well logging data. Journal of Jilin University (Earth Science Edition), 2021, 51 (3): 951- 956.
Ni W J , Li Q , Guo W H , et al. Prediction of shear wave velocity in shale reservoir based on support vector machine. Journal of Xi'an Shiyou University (Natural Science Edition), 2017, 32 (4): 46- 49. 46-49, 54
Qiao H Q , Zhang B , Liu C . Research on prediction method of volcanic rock shear wave velocity based on improved Xu-White model. Energies, 2022, 15 (10): 3611.
Qiu F , Liu J H , Cai Y D , et al. Mechanical property evaluation of coal bed and favorable area prediction of coalbed methane (CBM) development based on well logging: a case study of No. 3 coal bed in Zhengzhuang Block, southern Qinshui Basin. Coal Geology & Exploration, 2023, 51 (4): 46- 56.
Rickman R, Mullen M, Petre E, et al. 2008. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale. //SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA: OnePetro, doi: 10.2118/115258-ms.
Shang F H , Yi X Y . A boosting-based algorithm and its application in flooded oil field layer identification. Journal of Southwest University for Nationalities·Natural Science Edition, 2007, 33 (1): 124- 128.
Sun J M , Dong J L , Liu X F . Shear wave velocity prediction using improved effective medium model. ASEG Extended Abstracts, 2007, 2007 (1): 1- 4.
Tang X Y , Li P . Analyzing on applicability of expanding influence correction method of acoustic logging in the coalbed methane reservoir. Progress in Geophysics, 2016, 31 (5): 2145- 2149.
Yang X C , Zhang J K , Zhou K . Study on establishing method of shear wave logging curves for coalbed in eastern block of Ordos Basin. Well Logging Technology, 2014, 38 (3): 304- 308.
Zhang G J , He X H , Lei X , et al. Prediction method of shear-wave slowness of low-permeability sandstone reservoir in Ledong Area of Yinggehai Basin. Henan Science, 2021, 39 (11): 1790- 1796.
Zhang W S , Yu T Z . Research on Boosting theory and its applications. Journal of University of Science and Technology of China, 2016, 46 (3): 222- 230.
, 明顺 , , 等. 基于煤岩脆性指数的煤体结构测井定量判识. 岩性油气藏, 2017, 29 (2): 139- 144.
明刚 , , 林奇 , 等. 基于Boosting-PLS回归的页岩总含气量预测方法. 煤炭技术, 2018, 37 (10): 23- 25.
, 守东 , 永静 , 等. 基于Boosting Tree算法的测井岩性识别模型. 测井技术, 2018, 42 (4): 395- 400.
, 汉青 , 智奇 , 等. 基于粒子群算法的页岩孔隙结构反演及横波速度预测. 地球物理学进展, 2017, 32 (2): 689- 695.
, 润成 , , 等. LM-BP神经网络在泥页岩地层横波波速拟合中的应用. 中国石油大学学报(自然科学版), 2017, 41 (3): 75- 83.
, 丽春 , 长玲 . 3种经典机器学习算法在火山岩测井岩性识别中的对比. 吉林大学学报(地球科学版), 2021, 51 (3): 951- 956.
维军 , , 文惠 , 等. 基于支持向量机的页岩储层横波速度预测. 西安石油大学学报(自然科学版), 2017, 32 (4): 46- 49. 46-49, 54
, 晋华 , 益栋 , 等. 基于测井的煤层力学特性评价及煤层气开发有利区预测——以沁南郑庄区块3号煤层为例. 煤田地质与勘探, 2023, 51 (4): 46- 56.
福华 , 雄鹰 . 一种基于Boosting的油田水淹层识别算法. 西南民族大学学报·自然科学版, 2007, 33 (1): 124- 128.
小燕 , . 声波时差测井扩径影响校正方法在煤层气储层中的适用性分析. 地球物理学进展, 2016, 31 (5): 2145- 2149.
秀春 , 继坤 , . 鄂东气田韩城矿区煤层横波时差测井曲线的构建方法. 测井技术, 2014, 38 (3): 304- 308.
冠杰 , 小胡 , , 等. 莺歌海盆地乐东区低渗透砂岩储层横波时差预测方法研究. 河南科学, 2021, 39 (11): 1790- 1796.
文生 , 廷照 . Boosting算法理论与应用研究. 中国科学技术大学学报, 2016, 46 (3): 222- 230.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(8460 KB)

Accesses

Citation

Detail

Sections
Recommended

/