Research development of fluxgate sensor

AoLin PAN, AiMin DU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2247-2264.

PDF(5586 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5586 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2247-2264. DOI: 10.6038/pg2025II0281

Research development of fluxgate sensor

Author information +
History +

Abstract

The fluxgate sensor is a kind of important equipment to measure the vector magnetic fields. Its working principle is based on the non-linear properties of soft magnetic material. It is used to detect weak magnetic fields. In this paper, we introduce the basic working principle, structure, and main applications of fluxgate sensor. We also discuss the research development of fluxgate sensor, focus on the progress of fluxgate sensor in miniaturization, intelligence, digitization, as well as reducing noise. Some further research directions are also provided.

Key words

Fluxgate sensor / Microminiaturization / Intelligence / Digitization / Noise reduction

Cite this article

Download Citations
AoLin PAN , AiMin DU. Research development of fluxgate sensor[J]. Progress in Geophysics. 2025, 40(5): 2247-2264 https://doi.org/10.6038/pg2025II0281

References

An Z C. Geomagnetic surveys and geomagnetic charts and geomagnetic studies in China for 1950-2000. Progress in Geophysics, 1999, 14(4): 76- 88.
Aschenbrenner H, Goubeau G. Eine Anordnungzur Registrierungrascher magnetischer Storungen (German). Hochfrequenz und Elektroakustik (Jahrbuch der drahtlosen Telegraphie und Telephonie), 1936, 47(6): 177- 181.
Baschirotto A, Dallago E, Malcovati P, et al. An integrated micro-fluxgate magnetic sensor with front-end circuitry. IEEE Transactions on Instrumentation and Measurement, 2009, 58(9): 3269- 3275.
Belloy E, Gilbert S E, Dezuari O, et al. A hybrid technology for miniaturised inductive device applications. Sensors and Actuators A: Physical, 2000, 85(1 -3): 304- 309.
Bernstain L L. About a new magnetometer type (Russian). Izvestia AN SSSR (News of the Academy of Science of USSR, physics Series), 1944, 8(4): 189- 193.
Bustillo J M, Howe R T, Muller R S. Surface micromachining for microelectromechanical systems. Proceedings of the IEEE, 1998, 86(8): 1552- 1574.
Butta M, Sasada I. Orthogonal fluxgate with annealed wire core. IEEE Transactions on Magnetics, 2013, 49(1): 62- 65.
Butta M, Janosek M, Ripka P. Electroplated multi-ring core planar fluxgate. Procedia Engineering, 2014, 87: 1176- 1179.
Butta M, Ripka P, Kraus L. Effect of stress-induced anisotropy on the noise of ring-core fluxgate. IEEE Transactions on Magnetics, 2015, 51(1): 4001104.
Butta M. Effect of thickness of electroplated NiFe cores on the noise of fluxgates. Acta Physica Polonica A, 2017, 131(4): 756- 758.
Buttino G, Cecchetti A, Poppi M. Domain wall relaxation frequency and magnetocrystalline anisotropy in Co-and Fe-based nanostructured alloys. Journal of Magnetism and Magnetic Materials, 2004, 269(1): 70- 77.
Can H, Svec Jr P, Tanrıseven S, et al. Optimizing the sensing performance of a single-rod fluxgate magnetometer using thin magnetic wires. Measurement Science and Technology, 2015, 26(11): 115102.
Can H, Svec P, Bydzovsky J, et al. Fabrication of fluxgate sensor heads by milling with a circuit board plotter and influence of core annealing conditions on sensor performance. Journal of Superconductivity and Novel Magnetism, 2017, 30(11): 3257- 3261.
Can H, Özkök E, İnanır F, et al. Optimizing the sensing properties of race-track fluxgates as a function of core layers. AIP Conference Proceedings, 2019, 2131(1): 020005.
Carr C, Brown P, Zhang T L, et al. The double star magnetic field investigation: instrument design, performance and highlights of the first year's observations. Annales Geophysicae, 2005, 23(8): 2713- 2732.
Caruso M J, Withanawasam L S. 1999. Vehicle detection and compass applications using AMR magnetic sensors. //Sensors Expo Proceedings. Morris Plains: Honeywell Inc., 477-489.
Celegato F, Coisson M, Khan O, et al. Comprehensive theoretical and experimental analysis of spin waves in magnetic thin film. IEEE Transactions on Magnetics, 2015, 51(1): 1- 4.
Cerman A, Kuna A, Ripka P, et al. Digitalization of highly precise fluxgate magnetometers. Sensors and Actuators A: Physical, 2005, 121(2): 421- 429.
Chen S Y. 2019. Research on performance enhancement of residence time difference fluxgate sensors based on the dynamic hysteresis model[Ph. D. thesis](in Chinese). Changchun: Jilin University, 1 -145.
Chen Z X, Hu G L, B, et al. Research status of fluxgate sensor and its applications in marine field. Digital Ocean & Underwater Warfare, 2021, 4(1): 37- 45.
Cheng C, Davies R, Sturcken N, et al. Optimization of ultra-soft CoZrTa/SiO2/CoZrTa trilayer elements for integrated inductor structures. Journal of Applied Physics, 2013, 113(17): 17A.
Chiriac H, Astefanoaei I. A model of the DC Joule heating in amorphous wires. Physica Status Solidi (A), 1996, 153(1): 183- 189.
Choi W Y, Kim J O. Two-axis micro fluxgate sensor on single chip. Microsystem Technologies, 2006, 12: 352- 356.
Dentith M, Mudge S T. Geophysics for the Mineral Exploration Geoscientist. Cambridge: Cambridge University Press, 2014
Dezuari O, Belloy E, Gilbert S E, et al. New hybrid technology for planar fluxgate sensor fabrication. IEEE Transactions on Magnetics, 1999, 35(4): 2111- 2117.
Dezuari O, Belloy E, Gilbert S E, et al. Printed circuit board integrated fluxgate sensor. Sensors and Actuators A: Physical, 2000, 81(1 -3): 200- 203.
Ding H J, Sui H T. The recent progress of the fluxgate magnetometer and sensor. Progress in Geophysics, 2004, 19(4): 743- 745.
Drljača P M, Vincent F, Kejík P., et al. Advanced process of the magnetic core integration for the micro fluxgate magnetometer. Sensors and Actuators. A: Physica, 2006, 129(01-02): 58- 61.
Du A M, Zhang Y, Li H Y, et al. The Chinese Mars ROVER fluxgate magnetometers. Space Science Reviews, 2020, 216(8): 135.
Du A M, Ge Y S, Wang H P, et al. Ground magnetic survey on Mars from the Zhurong rover. Nature Astronomy, 2023, 7(9): 1037- 1047.
Fan J, Ning N, Wu J, et al. Study of the noise in multicore orthogonal fluxgate sensors based on Ni-Fe/Cu composite microwire arrays. IEEE Transactions on Magnetics, 2009, 45(10): 4451- 4454.
Feng W G. 2019. Study on three-axis digital fluxgate sensor and its intelligent calibration method[Ph. D. thesis](in Chinese). Xi'an: Northwestern Polytechnical University, 1 -149.
Forslund Å, Belyayev S, Ivchenko N, et al. Miniaturized digital fluxgate magnetometer for small spacecraft applications. Measurement Science and Technology, 2008, 19(1): 015202.
Gordon D I, Brown R E. Recent advances in fluxgate magnetometry. IEEE Transactions on Magnetics, 1972, 8(1): 76- 82.
Gorelik G S. About some nor-linear phenomena appearing at interperpendicular magnetic field superposition (Russian). Izvestia AN SSSR (News of the Academy of Science of USSR, Physics Series), 1944, 8(4): 172- 188.
Guo L. 2020. Amorphous nanocrystal magnetic core-based miniature fluxgate sensor and its application in biological detection[Ph. D. thesis](in Chinese). Shanghai: Shanghai Jiao Tong University, 1 -159.
Hong Y Q, Jiang H X. Microelectronics mechanical system and silicon micromachining technique. Electronics Process Technology, 2003, 24(5): 185- 188.
Hou X W. 2016. Study of Microinductor with magnetic core based on MEMS fabrication processes[Ph. D. thesis](in Chinese). Xi'an: Northwestern Polytechnical University, 1 -149.
Hu Y S. Overview of manufacturing process for micro electro mechanical systems. The Journal of New Industrialization, 2022, 12(7): 71- 75.
Janošek M, Ripka P. PCB sensors in fluxgate magnetometer with controlled excitation. Sensors and Actuators A: Physical, 2009, 151(2): 141- 144.
Janosek M, Butta M, Dressler M, et al. 1 -pT noise fluxgate magnetometer for geomagnetic measurements and unshielded magnetocardiography. IEEE Transactions on Instrumentation and Measurement, 2020, 69(5): 2552- 2560.
Jeng J T, Chen J H, Lu C C. Enhancement in sensitivity using multiple harmonics for miniature fluxgates. IEEE Transactions on Magnetics, 2012, 48(11): 3696- 3699.
Johnson F, Garmestani H, Chu S Y, et al. Induced anisotropy in FeCo-based nanocrystalline ferromagnetic alloys (HITPERM) by very high field annealing. IEEE Transactions on Magnetics, 2004, 40(4): 2697- 2699.
Kawahito S, Cerman A, Aramaki K, et al. A weak magnetic field measurement system using micro-fluxgate sensors and delta-sigma interface. IEEE Transactions on Instrumentation and Measurement, 2003, 52(1): 103- 110.
Langel R A, Hinze W J. The Magnetic Field of the Earth's Lithosphere: The Satellite Perspective. Cambridge: Cambridge University Press, 1998
Lei C, Lei J, Yang Z, et al. A low power micro fluxgate sensor with improved magnetic core. Microsystem Technologies, 2013, 19(4): 591- 598.
Lei C, Sun X C, Zhou Y., et al. Reverse optimization of an integrated solenoid fluxgate sensor based on Co-based amorphous soft magnetic ribbon. Journal of Electronic Materials, 2016, 45(10): 5356- 5361.
Lei C, Liu Y, Sun X C, et al. Improved performance of integrated solenoid fluxgate sensor chip using a bilayer Co-Based ribbon core. IEEE Sensors Journal, 2015, 15(9): 5010- 5014.
Li F, Zhu Y, Li L H, et al. Review on magnetron sputtering technology and its development. Vacuum Electronics, 2011, 24(3): 49- 54.
Li J J, Zhang X, Shi J Q, et al. Performance degradation effect countermeasures in residence times difference (RTD) fluxgate magnetic sensors. IEEE Sensors Journal, 2019, 19(24): 11819- 11827.
Li X P, Fan J, Ding J, et al. A design of orthogonal fluxgate sensor. Journal of Applied Physics, 2006, 99(8): 08B.
Liakopoulos T M, Ahn C H. A micro-fluxgate magnetic sensor using micromachined planar solenoid coils. Sensors and Actuators A: Physical, 1999, 77(1): 66- 72.
Liu Y. Development status and key technology analysis of micro electro mechanical systems. Advanced Materials Industry, 2019,(3): 51- 55.
Lu C C, Liu Y T, Jhao F Y, et al. Responsivity and noise of a wire-bonded CMOS micro-fluxgate sensor. Sensors and Actuators A: Physical, 2012, 179: 39- 43.
Lu C C, Huang J. A 3-axis miniature magnetic sensor based on a planar fluxgate magnetometer with an orthogonal fluxguide. Sensors, 2015, 15(6): 14727- 14744.
Luo H, Du A M, Ge Y S, et al. Along-track calibration of the Zhurong Rover magnetometer. Science China Earth Sciences, 2024, 67(2): 552- 565.
Luo T, Liu D M, Yin S. Digitized design of fluxgate signal processing circuit. Journal of Naval University of Engineering, 2010, 22(1): 97- 100.
Ma F, Zhao Z, Liu F. Digitalization of triaxial fluxgate sensor based on SoC and CPLD. Instrument Technique and Sensor, 2008,(7): 108- 109.
Magnes W, Pierce D, Valavanoglou A, et al. A sigma-delta fluxgate magnetometer for space applications. Measurement Science and Technology, 2003, 14(7): 1003- 1012.
Miguel C, Zhukov A, del Val J J, et al. Coercivity and induced magnetic anisotropy by stress and/or field annealing in Fe-and Co-based (Finemet-type) amorphous alloys. Journal of Magnetism and Magnetic Materials, 2005, 294(2): 245- 251.
Mobley F F, Eckard L D, Fountain G H, et al. MAGSAT-A new satellite to survey the Earth's magnetic field. IEEE Transactions on Magnetics, 1980, 16(5): 758- 760.
Musmann G. Fluxgate Magnetometers for Space Research. Bod, 2010,
Nagendran R, Mohanty I, Arasu A V T, et al. Transient eddy current NDE system based on fluxgate sensor for the detection of defects in multilayered conducting material. Journal of Nondestructive Evaluation, 2018, 37(3): 52.
O'Brien H, Brown P, Beek T, et al. A radiation tolerant digital fluxgate magnetometer. Measurement Science and Technology, 2007, 18(11): 3645- 3650.
Primdahl F. The fluxgate mechanism, Part I: the gating curves of parallel and orthogonal fluxgates. IEEE Transactions on Magnetics, 1970, 6(2): 376- 383.
Primdahl F. The fluxgate magnetometer. Journal of Physics E: Scientific Instruments, 1979, 12(4): 241- 253.
Ripka P. Race-track fluxgate sensors. Sensors and Actuators A: Physical, 1993, 37-38: 417- 421.
Ripka P, Kaspar P. Portable fluxgate magnetometer. Sensors and Actuators A: Physical, 1998, 68(1 -3): 286- 289.
Russell C T, Anderson B J, Baumjohann W, et al. The magnetospheric multiscale magnetometers. Space Science Reviews, 2016, 199(1): 189- 256.
Sarkar P, Vcelak J, Roy R K, et al. Co-based amorphous material for giant magnetoimpedance and fluxgate sensing cores. IEEE Transactions on Magnetics, 2015, 51(11): 2002404.
Sasada I. Low-noise fundamental-mode orthogonal fluxgate magnetometer built with an amorphous ribbon core. IEEE Transactions on Magnetics, 2018, 54(11): 4002105.
Savarapu R, Sohan A, Kollu P. Fabrication advancements in integrated fluxgate sensors: a mini review. Advanced Engineering Materials, 2022, 24(4): 2101040.
Sehnal L, PeŘestý R, PospíŠilová L, et al. Status of the hardware and software at the final stages of the project MIMOSA. Advances in Space Research, 2002, 30(2): 363- 367.
Seitz T. Fluxgate sensor in planar microtechnology. Sensors and Actuators A: Physical, 1990, 22(1 -3): 799- 802.
Sheard S N, Ritchie T J, Christopherson K R, et al. Mining, environmental, petroleum, and engineering industry applications of electromagnetic techniques in geophysics. Surveys in Geophysics, 2005, 26(5): 653- 669.
Svalov A, Lokamani L, Schäfer R, et al. Magnetization processes and magnetic domain structure in weakly coupled GdCo/Si/Co trilayers. Journal of Alloys and Compounds, 2014, 615: S366- S370.
Szewczyk R, Ostaszewska-Liżewska A, Råback P. Modelling the fluxgate sensors with magnetic field concentrators. Acta Physica Polonica A, 2020, 137(5): 700- 702.
Takashi A, Teruou T, Tomoyuki N, et al. New software defined fluxgate magnetometer. IEEJ Transactions on Sensors and Micromachines, 2003, 123(10): 448- 449.
Trigona C, Sinatra V, Ando B, et al. Flexible microwire residence times difference fluxgate magnetometer. IEEE Transactions on Instrumentation and Measurement, 2017, 66(3): 559- 568.
van den Meerakker J E A M, Baarslag P C. The behaviour of permalloy in NH4F/HF solutions. Corrosion Science, 2000, 42(7): 1169- 1183.
Wang H F, Chen S D, Zhang S, et al. A high-performance portable transient electro-magnetic sensor for unexploded ordnance detection. Sensors, 2017, 17(11): 2651.
Wang H L. Research on the design of low power intelligent sensors for embedded systems. Popular Standardization, 2023,(17): 40- 42.
Wang H Y, Sun W B, Chen Y B, et al. Motion of electrons in non-uniform magnetic field during magnetron sputtering. Physics Experimentation, 2008, 28(11): 1- 5.
Wang J, Hao S. Principle and development of magnetron sputtering technology. Technology Innovation and Application, 2015, 5(2): 35.
Wei S R, Liao X Q, Zhang H, et al. Recent progress of fluxgate magnetic sensors: basic research and application. Sensors, 2021, 21(4): 1500.
Weng M C, Yang Z Q, Xuan Z Y. Investigate progress on fabrication and measurement of micro-fluxgate sensors. Instrument Technique and Sensor, 2008, 6: 9- 11. 9-11, 15
Xiao Y. The European space agency's "Venus Express" probe (Part 2). Aerospace China, 2006,(3): 41- 44.
Xu W, Zou X D, Zhang Z H., et al. Research progress of fluxgate sensors based on MEMS. Journal of Magnetic Materials and Devices, 2023, 54(2): 95- 101.
Zhang C D. The past, present and future of the satellite magnetic survey. Geophysical and Geochemical Exploration, 2003, 27(5): 329- 332.
Zhi M H. 2017. Research on high precision digital fluxgate sensor[Ph. D. thesis](in Chinese). Suzhou: Soochow University, 1 -130.
Zhi S T. 2020. Fundamental mode micro orthogonal fluxgate sensor and its application in biological detection[Ph. D. thesis](in Chinese). Shanghai: Shanghai Jiao Tong University, 1 -147.
Zhou Y, Zhao L, Yang H, et al. Application of multi-information intelligent sensor fusion technology in joint operations. National Defense Technology, 2024, 45(1): 22- 29.
Zhukov A, Ipatov M, Gonzalez J, et al. Recent advances in studies of magnetically soft amorphous microwires. Journal of Magnetism and Magnetic Materials, 2009, 321(7): 822- 825.
Zorlu O, Kejik P, Popovic R S. An orthogonal fluxgate-type magnetic microsensor with electroplated Permalloy core. Sensors and Actuators A: Physical, 2007, 135(1): 43- 49.
振昌. 1950-2000年中国地磁测量地磁图与地磁研究. 地球物理学进展, 1999, 14(4): 76- 88.
陈思宇. 2019. 基于动态磁滞模型的时间差型磁通门传感器性能提升研究[博士论文]. 长春: 吉林大学, 1 -145.
正想, 光兰, , 等. 磁通门传感器研究现状及其在海洋领域的应用. 数字海洋与水下攻防, 2021, 4(1): 37- 45.
鸿佳, 厚堂. 磁通门磁力仪和探头研制的最新进展. 地球物理学进展, 2004, 19(4): 743- 745.
冯文光. 2019. 三轴数字磁通门传感器及其智能化误差补偿方法研究[博士论文]. 西安: 西北工业大学, 1 -149.
郭磊. 2020. 基于非晶纳米晶磁芯的微型磁通门传感器及其在生物检测中的应用[博士论文]. 上海: 上海交通大学, 1 -159.
永强, 红霞. 微电子机械系统及硅微机械加工工艺. 电子工艺技术, 2003, 24(5): 185- 188.
侯晓伟. 2016. 基于MEMS工艺的磁芯微电感器件研究[博士论文]. 西安: 西北工业大学, 1 -149.
艺森. 微机电系统制造工艺综述. 新型工业化, 2022, 12(7): 71- 75.
, , 刘合, 等. 磁控溅射技术及其发展. 真空电子技术, 2011, 24(3): 49- 54.
. 微机电系统发展现状及关键技术分析. 新材料产业, 2019,(3): 51- 55.
, 爱民, 亚松, 等. 祝融号火星表面磁场探测仪的沿轨标定. 中国科学: 地球科学, 2024, 54(2): 573- 586.
, 大明, . 磁通门信号处理电路的数字化设计. 海军工程大学学报, 2010, 22(1): 97- 100.
, , . 基于SoC与CPLD的数字化三轴磁通门传感器. 仪表技术与传感器, 2008,(7): 108- 109.
合英, 文博, 宜宝, 等. 磁控溅射镀膜过程中非均匀磁场中电子的运动. 物理实验, 2008, 28(11): 1- 5.
红林. 面向嵌入式系统的低功耗智能传感器设计研究. 大众标准化, 2023,(17): 40- 42.
, . 磁控溅射技术的原理与发展. 科技创新与应用, 2015, 5(2): 35.
孟超, 志强, 仲义. 微型磁通门传感器的制备与测试研究进展. 仪表技术与传感器, 2008,(6): 9- 11. 9-11, 15
. 欧空局的"金星快车"探测器(下). 中国航天, 2006,(3): 41- 44.
, 旭东, 志红, 等. 基于微机电系统(MEMS)的磁通门传感器研究进展. 磁性材料及器件, 2023, 54(2): 95- 101.
昌达. 卫星磁测的过去·现在·未来. 物探与化探, 2003, 27(5): 329- 332.
支萌辉. 2017. 高精度数字磁通门传感器研究[博士论文]. 苏州: 苏州大学, 1 -130.
支绍韬. 2020. 基波模式微型正交磁通门传感器及其生物检测应用研究[博士论文]. 上海: 上海交通大学, 1 -147.
, , , 等. 多信息智能传感器融合技术在联合作战中的应用. 国防科技, 2024, 45(1): 22- 29.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5586 KB)

Accesses

Citation

Detail

Sections
Recommended

/